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Introduction
• huge topic (Ulam’s analogy: the study of nonlinear systems as the study of “non-elephant animals”. Ditto for

deterministic systems.)

• stochasticity generally not covered thoroughly in math biology classes (but see Allen (2003), Kot (2001)); harder
math, (?) less clear-cut results (?)

• stochasticity in a model: epistemological rather than an ontological purpose

• analysis harder . . . especially for nonlinear systems (most of the interesting ones, although there are interesting
linear approximations, e.g. during invasions)

• definitions can be a bit tricky: is a diffusion model a “stochastic” model or not? Not explicitly . . . but implicitly
based on a “random walk” or Brownian motion process (movement of individuals in space, or of populations in
state space)

• well-posed stochastic models typically converge to deterministic ones in some limit (e.g. Kurtz (1970)), either
in a large-population case or as the expected solution of an ensemble of realizations

• defs: endogenous (≈ demographic) vs. exogenous (≈ environmental) stochasticity

• state space can get very large (e.g. metapopulation models)

Examples
• discrete-state populations (Markov chains, etc.) easier than continuous populations (stochastic differential equa-

tions)

• discrete time easier than continuous time

Simple population models: analogues of logistic equation. Mortality = binomial (µ+αN ). Fecundity = Poisson(fN ).
(Different from SI model, which has infection binomial with probability (1− exp(−βI∆t)) — maximum value = 1.)

(Discrete models have their own issues: results may be sensitive to the order of events — fecundity before mortal-
ity, or vice versa? Problems go away as ∆t→ 0.)

Continuous-time model: use master equation
birth N → N + 1 fN∆t
death N → N − 1 (µ+ αN)∆t

(note r = f − µ, K = (f − µ)/α; R = f/µ disappears from deterministic analogue but not in stochastic case

Analytical techniques
• branching processes

• moment generating functions

• Kolmogorov (Fokker-Planck) “forward equation”), diffusion approximations

• (quasi-)stationary distributions (Keeling and Ross, 2008)

• moment equations/moment closure (e.g. Isham (2005))
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Numerical techniques
• Gillespie model

• exact solutions of Kolmogorov forward equations (leading eigenvectors)

• moment equations

Phenomena
Are stochastic models just “deterministic models with added noise”?

• Jensen’s inequality (static, not dynamic, but important): e.g. geometric mean in exponential growth

• extinction and fixation: absorbing boundaries in population genetics and ecology (first passage times etc.)

• neutral theories of population genetics (Ewens) and ecology (Hubbell): related to classical “urn problems”

• interaction of nonlinearity with noise: fractal basin-hopping, (de)stabilization of attractors by noise (stochastic
repellors) (Coulson et al., 2004) Rand & Keeling

See also
Some talks by Rick Durrett (applied probability, Cornell): http://www.math.cornell.edu/˜durrett/
Talks/Talks.html, and the corresponding paper http://www.math.cornell.edu/˜durrett/Talks/
waldpaper.pdf

Lecture notes: http://www.amath.washington.edu/courses/423-winter-2007/outline.pdf
Bailey (1990); Renshaw (1993); Lande, Engen, and Sther (2003)
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