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1 Matrices

Matrices are tables of generally complex numbers. Examples:

A =
(

1 2
3 4

)
, B =

(
1 2 3
4 5 6

)
Matrix A is said to be square because it has equally many rows and columns, namely 2. Matrix B
on the other hand is rectangular and has 2 rows and 3 columns.

A general matrix X may have n rows and m columns, and we sometimes write X ∈ Rn×m if
all entries of the matrix are real numbers, or X ∈ Cn×m if they are complex. Special matrices are
row vectors (n = 1) and column vectors (m = 1).

Operations on matrices
We can add matrices X and Y if (and only if) both have the same number of rows and columns,

and this is done entrywise: (
1 2
2 1

)
+
(

1 3
2 0

)
=
(

2 5
4 1

)
We cannot add the matrices A and B defined earlier.

We can multiply matrix X and Y (if and only if) matrix X has the same number of columns
as the matrix Y has rows, i.e. if and only if X ∈ Cn×m and Y ∈ Cm×p. The result of the
multiplication is a matrix Z = XY ∈ Cn×p, i.e. it has the same number of rows as X and the
same number of columns as Y . So what is Z? Let’s specify each of its entries. Denoting [Z]ij as
the entry in the ith row and jth column of Z, we have that

[Z]ij =
m∑

k=1

[X]ik[Y ]kj , for i = 1, . . . , n and j = 1, . . . , p.

Notice that this formula is also given by the dot product of the ith row of X and the jth column of
Y . For example, we can calculate AB (but not BA; why not?) and AA which we denote for short
as A2:

AB =
(

9 12 15
19 26 33

)
, A2 =

(
7 10
15 22

)
We can multiply a matrix by a scalar: If X ∈ Cn×m and α ∈ C then [αX]ij = α[X]ij . For

example,

2A =
(

2 4
6 8

)
.

The following rules are easily verified, provided that the operation makes sense. The matrix
0 is a matrix having only zero entries, and the matrix In is a matrix in Rn×n with all diagonal
entries equal to 1, and off-diagonal entries equal to 0: [In]ii = 1 for all i = 1, . . . , n and [In]ij = 0
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if i 6= j.

(A+B) + C = A+ (B + C)
A+ 0 = A = 0 +A

A+B = B +A

A+ (−A) = 0 = (−A) +A

(AB)C = A(BC)
InA = A = AIm

A(B + C) = AB +AC

AB and BA are not necessarily the same, even if both exist (can you give an example?).
Determinants: Given a square matrix X ∈ Cn×n, we can associate a complex number to

it, denoted as detA. I am not giving the general definition which requires some linear
algebra, but here is how you compute the determinant for matrices in C2×2 and C3×3:

det
(
a b
c d

)
= ad− bc,

det

x11 x12 x13

x21 x22 x23

x31 x32 x33

 = x11x22x33 + x12x23x31 + x13x32x21 − x13x31x22 − x21x12x33 − x11x23x32

We say that X is singular if and only if detX = 0, and non-singular otherwise.
If for given X ∈ Cn×n, there is some Y ∈ Cn×n such that XY = In = Y X, then we say that X

is invertible with inverse Y . If X is invertible, then its inverse is unique (can you prove this?),
and we usually denote it as X−1. Matrices are not always invertible. In fact, it can be shown that
a matrix is invertible if and only if it is non-singular. Here’s how you calculate the inverse of an
invrtible 2-by-2 matrix: (

a b
c d

)
=

1
ad− bc

(
d −b
−c a

)
(To convince yourself that this is the correct result, multiply the matrix and its inverse; is the
result equal to I2?)

Eigenvalue-eigenvector pairs Given A ∈ Cn×n, we say that λ ∈ C is an eigenvalue of A if
there is some vector x ∈ Cn×1 with x 6= 0 such that:

Ax = λx. (1)

The vector x is called an eigenvector of A.
How to find eigenvalues and eigenvectors? This proceeds in two steps. First, we find the

eigenvalues. Rewrite (1):
(A− λIn)x = 0. (2)

Demanding that the above system of linear equations in the unknown x, has a non-zero solution,
is equivalent to asking that the matrix (A − λIn) is singular (this would be proved in a typical
linear algebra course). This in turn is equivalent to requiring that:

det(A− λIn) = 0. (3)

This is a polynomial equation in λ of degree n, called the characteristic equation. Example:

A =
(

1 2
2 1

)
Then the characteristic equation

det(A− λI2) = det
(

1− λ 2
2 1− λ

)
= 1− 2λ+ λ2 − 4 = λ2 − 2λ− 3 = 0,

is a quadratic equation with solutions λ1 = 3 and λ2 = −1.
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The second step is to find, for every eigenvalue, a corresponding eigenvector, i.e., a non-zero
solution x for (2). Continuing the example, let’s find an eigenvector x1 corresponding to λ1 = 3.
This is a solution to (

−2 2
2 2

)
x1 = 0,

and

x1 =
(

1
1

)
is clearly a solution (so is any non-zero scalar multiple of x1; check this. Actually, this is a general
fact, true for any eigenvector). Similarly, for λ2 = −1, the vector

x2 =
(
−1
1

)
is a corresponding eigenvector. (verify this)

Remark 1. MATLAB is available on all campus computers. It is software that is very friendly to
matrices. When you start it up, you will see a command line >> appear. To define a matrix(

1 1.2
3 4

)
,

type

A = [1 1.2 ; 3 4]

after the command line and hit return. MATLAB will produce an output in the form of the desired
matrix. Now that this matrix has been defined, you can calculate its eigenvector-eigenvalues pairs
by typing the following:

[T,D]=eig(A)

MATLAB will return two matrices T and D, where T contains the eigenvectors and D is a diagonal
matrix containing the eigenvalues on the diagonal.

2 Discrete time linear systems

We define a discrete time linear system on Cn as follows:

x(t+ 1) = Ax(t), t = 0, 1, 2, . . . (4)

where x(t) is a column vector denoting the state of some physical system. It is called the state
vector and it belongs to Cn. 1

Given the value of x(0) (the initial condition), we can calculate the future values of x by matrix
multiplication:

x(1) = Ax(0), x(2) = Ax(1) = A2x(0), . . .

It is easy to see, that for an aribitrary t = 0, 1, 2, . . . (if we agree that A0 = In)

x(t) = Atx(0), (5)

showing that it is important to be able to calculate the powers of a square matrix. Is there a
convenient way to do this?

Matrix powers In the special case that A ∈ Cn×n is a diagonal matrix:

A =


d1 0 . . . 0
0 d2 . . . 0
...

...
. . .

...
0 0 . . . dn

 ,

1In this course most systems will be defined on Rn, rather than on Cn. Then x(t) belongs to Rn and A to Rn×n.
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calculating At for any t = 0, 1, 2, . . . is easy because the powers At are also diagonal:

At =


dt
1 0 . . . 0

0 dt
2 . . . 0

...
...

. . .
...

0 0 . . . dt
n


Is this of any use when we wish to calculate the powers of a matrix that isn’t diagonal? The

answer is yes!
First, we say that a matrix A ∈ Cn×n is diagonalizable if there is some non-singular matrix

T ∈ Cn×n such that
T−1AT = D,

where D is some diagonal matrix.
Let’s see why this helps us to calculate At?

At = (TDT−1)t = (TDT−1)(TDT−1) . . . (TDT−1) = TDtT−1, (6)

and since Dt is diagonal as we pointed out earlier, the final matrix, TDtT is very easily calculated
as the product of three matrices!

Of course, the question is how to determine if a given matrix A is diagonalizable, and if so,
how to find the matrices T and D. This is a very important question studied at depth in a linear
algebra course. The answer is as follows:

Theorem 1. A matrix A ∈ Cn×n is diagonalizable if and only if it has a basis of eigenvectors. If
A is diagonalizable, then D is the diagonal matrix that contains the eigenvalues λ1, λ2, . . . , λn on
the diagonal, and T is the matrix formed by writing the corresponding eigenvectors x1, x2, . . . , xn.

But what is a basis? A basis (for Cn) is a set of n vectors {z1, . . . , zn} with the property
that any vector x ∈ Cn can be written as a linear combination of the vectors z1, . . . , zn. That is,
there must exist complex scalars c1, . . . , cn, such that

x = c1z1 + c2z2 + · · ·+ cnzn = Zc, where Z = [z1 z2 . . . zn] and c =


c1
c2
...
cn

 .

To test if a given set of vectors {z1, . . . , zn} is a basis, it suffices to check that the matrix Z is
non-singular, or equivalently, that its determinant is non-zero.

It turns out that many matrices are diagonalizable. For instance, every matrix that has distinct
eigenvalues is diagonalizable (this is shown in a linear algebra course).

Let us illustrate this on our previous example. The eigenvalues λ1 = 3 and λ2 = −1, hence A
is diagonalizable, i.e. T−1AT = D with

D =
(

3 0
0 −1

)
and T =

(
1 −1
1 1

)
(Note that T is indeed non-singular: detT = 2.) Consequently, the powers of A are

At =
(

1 −1
1 1

)(
3t 0
0 (−1)t

)
1
2

(
1 1
−1 1

)
=

1
2

(
3t + (−1)t 3− (−1)t

3− (−1)t 3t + (−1)t

)
I hope you see that evaluating A1000 is a lot easier using this formula, than multiplying A 999
times with itself.

3 Stability for discrete time linear systems

Let us start with a very simple case that reveals the key issues concerning the notion of stability.
Consider a discrete time linear system, defined on C;

x(t+ 1) = ax(t), t = 1, 2, . . .

4



for some a ∈ C.
Given the initial condition x(0) we wonder what happens to the solution sequence x(1), x(2), . . .

when t → ∞. Does the sequence converge, or not? Does it remain bounded, or not? We know
that

x(t) = atx(0), t = 0, 1, . . . ,

and therefore, using the notation |a| for the modulus 2 of a:

1. If |a| < 1, then limt→+∞ x(t) = 0, no matter what x(0) is.

2. If |a|=1, then x(t) remains bounded for all t, no matter what x(0) is: |x(t)| = |atx(0)| =
|x(0)|.

3. If |a| > 1, then limt→∞ x(t) = ∞ when x(0) 6= 0. In particular, if a solution does not start
in 0, it grows unbounded.

So it turns out that the deciding factor in this discussion is the modulus of a.
We would like to extend this to general discrete time linear systems (4). But what is the

generalization of the modulus of a complex number to a matrix? It turns out that this is not the
right question. Instead, we will see below that the results are stated in terms of the moduli of
the eigenvalues of the matrix A.

Consider (4) and assume that the matrix A is diagonalizable. By Theorem 1 we know that A
has eigenvalues λ1, λ1, . . . , λn and a basis of associated eigenvectors x1, x2, . . . , xn. Now consider
the initial condition x(0) for our system. Since the eigenvectors of A form a basis, we can write
x(0) as a linear combination of the eigenvectors:

x(0) = c1x1 + c2x2 + · · ·+ cnxn (7)

for appropriately chosen complex scalars c1, c2, . . . , cn. Then

x(t) = Atx(0),

and combining this with (7), we find that

x(t) = At(c1x1+c2x2+· · ·+cnxn) = c1A
tx1+c2Atx2+· · ·+cnAtxn = c1λ

t
1x1+c2λt

2x2+. . . cnλt
nxn.

In the last step we repeatedly used that Axi = λixi for all i = 1, 2, . . . , n. From this expression we
immediately see that

Theorem 2. Let A ∈ Rn×n be diagonalizable, with eigenvalues λi for i = 1, . . . , n.

1. If |λi| < 1 for all i = 1, . . . , n, then limt→+∞ x(t) = 0, no matter what x(0) is.

2. If |λi| ≤ 1 for all i = 1, . . . , n, then x(t) remains bounded.

3. If there is some eigenvalue λj such that |λj | > 1, then x(t) grows unbounded for almost all
initial conditions x(0). More precisely, x(t) grows unbounded whenever the initial condition
x(0) is such that cj 6= 0 in (7).

Visualizing the condition on the eigenvalues in the complex plane C, it amounts to checking
whether the eigenvalues of A are inside the unit circle S = {z ∈ C | |z| = 1} (case 1), on the unit
disk D = {z ∈ C | |z| ≤ 1} (case 2), or that A has an eigenvalue outside the unit disk (case 3).

We say that system (4) is asymptotically stable in case 1, stable in case 2 and unstable
in case 3.

2Recall that the modulus of a complex number z = α+ iβ is defined as |z| =
p
α2 + β2.
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4 Continuous time linear systems

In this section we discuss continuous time linear systems:

ẋ(t) = Ax(t), (8)

where x(t) ∈ Rn, and t ∈ R, and ẋ(t) stands for d/dt(x(t)).

Do not confuse discrete and continuous time linear systems (4) and (8)!

Given an initial condition x(0) for (8), can we find its solution x(t), provided this solution exists? If
x(t) ∈ R and A = a ∈ R, then we know from our course in differential equations that x(t) = eat x(0)
(the differential equation is separable, and can be solved easily). But what if A ∈ Rn×n and
n > 1? This is also discussed in a typical differential equations course, and involves the concept
of a fundamental matrix solution. We will not repeat that discussion here, but rather accept the
following fact:

The solution x(t) to (8) with initial condition x(0) exists and is unique for all t ∈ R, and it is
given by:

x(t) = etA x(0).

But what is etA? It is called the matrix exponential, and it is defined as follows (where we use
the convention that 0! = 1 and A0 = In):

etA =
∞∑

i=0

1
i!

(tA)i = In + tA+
1
2!

(tA)2 +
1
3!

(tA)3 + . . .

It can be shown that this matrix series is well-defined for all t ∈ R (i.e., it converges; in fact, it
converges absolutely).

Given A, how to calculate etA? For a general matrix, this might be quite hard using the
definition directly, as you may suspect. An exception is the case where the matrix is diagonal. If

D =


d1 0 . . . 0
0 d2 . . . 0
...

...
. . .

...
0 0 . . . dn

 ,

then

etD = In + (tD) +
1
2!

(tD)2 + · · · =


etd1 0 . . . 0
0 etd2 . . . 0
...

...
. . .

...
0 0 . . . etdn

 .

In other words, the matrix exponential of a diagonal matrix is also diagonal!
How should we proceed for a non-diagonal matrix? The answer lies in realizing that this is a

problem of calculating the powers of a matrix, which, as we already know, is easy for diagonalizable
matrices. So, assume that A is diagonalizable. Then there is a non-singular matrix T and a diagonal
matrix D such that A = TDT−1. Plug this into the definition of the matrix exponential:

etA = In + T (tD)T−1 +
1
2!

(T (tD)T−1)2 +
1
3!

(T (tD)T−1)3 + . . .

= In + T (tD)T−1 +
1
2!

(T (tD)T−1)(T (tD)T−1) +
1
3!

(T (tD)T−1)(T (tD)T−1)(T (tD)T−1) + . . .

= TT−1 +
1
2!
T (tD)2T−1 +

1
3!
T (tD)3T−1 + . . .

= T

(
In + (tD) +

1
2!

(tD)2 +
1
3!

(tD)3 + . . .

)
T−1

= T etD T−1,

the product of three matrices which can be calculated easily, once you know tbe eigenvalue-
eigenvector pairs of matrix A.
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Example Continuing our example

A =
(

1 2
2 1

)
,

we find that

etA = T etD T−1 =
(

1 −1
1 1

)(
e3t 0
0 e−t

)
1
2

(
1 1
−1 1

)
=

1
2

(
e3t + e−t e3t− e−t

e3t− e−t e3t + e−t

)
(9)

Alternative method Another practical method to calculate matrix exponentials -often used
in engineering- is based on the inverse Laplace transform:

etA = L−1
(
(sIn −A)−1

)
.

Let us illustrate this on our example:

(sI2 −A) =
(
s− 1 −2
−2 s− 1

)
⇒ (sI2 −A)−1 =

(
s−1

(s+1)(s−3)
2

(s+1)(s−3)
2

(s+1)(s−3)
s−1

(s+1)(s−3)

)

Using partial fractions, we find that

(sI2 −A)−1 =

( 1
2

s+1 +
1
2

s−3

− 1
2

s+1 +
1
2

s−3
− 1

2
s+1 +

1
2

s−3

1
2

s+1 +
1
2

s−3

)
,

and taking the inverse Laplace transform we find that

etA =
(

1
2 e−t + 1

2 e3t − 1
2 e−t + 1

2 e3t

− 1
2 e−t + 1

2 e3t 1
2 e−t + 1

2 e3t

)
,

which agrees with (9).
Some properties of matrix exponentials Let A and B be complex n by n matrices, and

t, t1, t2 be real numbers. Then (no proofs):

et1A et2A = e(t1+t2)A

etA is non-singular and
(
etA
)−1

= e−tA

etA etB = et(A+B) if AB = BA (i.e. if A and B commute)
d

dt
etA = A etA = etAA

Note that AB = BA is sufficient for the third property to hold, but not necessary (can you show
this by constructing an example?).

Stability for continuous time linear systems Reconsider system (8), where A is assumed
to be diagonalizable. If x(0) is the initial condition, then we have seen that the solution x(t) of (8)
is described by the following formula:

x(t) = etA x(0) = T etD T−1x(0),

we see that all components of x(t) are linear combinations of exponential functions etdi . If di < 0,
then etdi → 0 as t → +∞. If di = 0, then etdi = 1 is bounded, while if di > 0, then etdi → ∞ as
t→ +∞. If di is a complex number3, say di = αi + iβi, then the same conclusions remain true if
we replace di in the above inequalities by αi, i.e. by the real part of di, denoted by R(di).

Theorem 3. Let A ∈ Rn×n be diagonalizable, with eigenvalues λi for i = 1, . . . , n.

1. If R(λi) < 0 for all i = 1, . . . , n, then limt→∞ x(t) = 0, no matter what x(0) is.

2. If R(λi) ≤ 0 for all i = 1, . . . , n, then x(t) remains bounded.

3In that case etdi = et(αi+iβi) = etαi (cos(βit) + i sin(βit)) by Euler’s formula.
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3. If there is some eigenvalue λj such that R(λj) > 0, then x(t) grows unbounded for almost all
initial conditions x(0).

Notice in particular the difference between Theorem 2 and 3! Please do not confuse
these results. The first applies to discrete time systems, and the second to continuous
time systems.

Visualizing the condition on the eigenvalues in the complex plane C, it amounts to checking
whether the eigenvalues of A are in the open left-half plane {z ∈ C|R(z) < 0} (case 1), in the
closed left-half plane {z ∈ C|R(z) ≤ 0}(case 2), or that A has an eigenvalue in the open right-half
plane {z ∈ C|R(z) > 0} (case 3).

As before, we say that system (8) is asymptotically stable in case 1, stable in case 2 and
unstable in case 3.

5 Exercise

Let

A =
(
−1 1
0 a

)
where a is a real parameter and a 6= −1.

1. Find A107.

2. Find etA.

3. If x(0) =
(

1
1

)
for (4), find x(t).

4. If x(0) =
(

1
1

)
for (8), find x(t).

5. Discuss stability of system (4).

6. Discuss stability of system (8).

7. Why was a 6= −1 assumed?
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