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If necessary, first review section 3.4.1 Phase-plane analysis: Linear systems.
These notes describe a simple genetic network consisting of two genes. The product of gene 1

has concentration x, and the product of gene 2 has concentration y. We assume that the product
of each gene inhibits the transcription of the other gene. In practice, this happens when the
gene product of one gene binds to the site of the DNA corresponding to the other gene, thereby
inhibiting transcription.

The model is as follows:

ẋ = −γ1x+
x

x+ αy + 1
= x

(
−γ1 +

1
x+ αy + 1

)
(1)

ẏ = −γ2y +
y

y + βx+ 1
= y

(
−γ2 +

1
y + βx+ 1

)
(2)

where γ1, γ2 ∈ (0, 1) represent the decay rates of the proteins, and the state vector (x, y) has
non-negative components.

The production rate of protein 1 is given by the function

f(x, y) =
x

x+ αy + 1
,

where α > 0. This function is increasing in x (∂f/∂x > 0) and non-increasing in y (∂f/∂y ≤ 0).
Thus, the gene product of gene 1 promotes transcription and translation of gene 1, whereas the
gene product of gene 2 inhibits this process. Similarly, the production rate of protein 2 is given by
the (non-negative and bounded) function

g(x, y) =
y

y + βx+ 1
,

where β > 0, which has similar properties as f , namely it is increasing in y and non-increasing in
x.

Throughout the rest of these notes we make the following hypothesis:

H
1
α

(
1
γ1
− 1
)
<

1
γ2
− 1 and

1
β

(
1
γ2
− 1
)
<

1
γ1
− 1.

H implies in particular that:
αβ > 1, (3)

and equality which will turn out to be important later. Prove (3).
Nullclines and steady states
The x-nullclines, i.e. the set of points where ẋ = 0, are given by the straight lines:

x = 0 and x+ αy + 1− 1
γ1

= 0,

and the y-nullclines by

y = 0 and y + βx+ 1− 1
γ2

= 0,

see the left panel of Figure 1.
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Figure 1: Null-clines, direction of the vector field and steady states for (1) − (2) (left panel), and phase

portrait of (1)− (2) (right panel).

Using H, we see that there are 4 steady states:

(0, 0),
(

0,
1
γ2
− 1
)
,

(
1
γ1
− 1, 0

)
, (x∗, y∗),

where (x∗, y∗) is the unique positive solution of the linear equations

x∗ + αy∗ + 1− 1
γ1

= 0 (4)

y∗ + βx∗ + 1− 1
γ2

= 0 (5)

Although we could easily solve these equations, there is no need to find the solution explicitly as
we will see later.

Linearization at steady states
The Jacobian matrix of (1)− (2) is:

Jac(x, y) =

(
−γ1 + αy+1

(x+αy+1)2 − αx
(x+αy+1)2

− βy
(y+βx+1)2 −γ2 + βx+1

(y+βx+1)2

)

Verify this.
Evaluating this at the 4 steady states:

Jac(0, 0) =
(
−γ1 + 1 0

0 −γ2 + 1

)
implies that Jac(0, 0) has two positive eigenvalues and thus the steady state (0, 0) is a source
(sometimes called an unstable node).

Jac

(
0,

1
γ2
− 1
)

=

(
−γ1 + 1

α
(

1
γ2
−1
)

+1
0

∗ −γ2 + γ2
2

)
,

where the value of ∗ is irrelevant. The upper left entry is negative. This follows from the first
inequality in H:

1
α

(
1
γ1
− 1 <

1
γ2
− 1
)
⇒ 1(

1
γ1
− 1
)

+ 1
>

1

α
(

1
γ2
− 1
)

+ 1
⇒ γ1 >

1

α
(

1
γ2
− 1
)

+ 1
.
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The lower right entry is negative as well since γ2 ∈ (0, 1). These two entries are the eigenvalues of
the Jacobian matrix, and as they are negative, the steady state

(
0, 1

γ2
− 1
)

is a sink (sometimes

called a stable node). A similar calculation shows that the steady state
(

1
γ1
− 1, 0

)
is also a sink.

Verify this.
Finally, we consider

Jac(x∗, y∗) =

(
−γ1 + 1

x∗+αy∗+1 −
x∗

(x∗+αy∗+1)2 − αx∗

(x∗+αy∗+1)2

− βy∗

(y∗+βx∗+1)2 −γ2 + 1
(y∗+βx∗+1)2 − y∗

(y∗+βx∗+1)2

)

Notice that we have broken up each of the fractions appearing in the upper left and lower right
entries, in a sum of two fractions. The reason will be clear in a minute. Using (4) − (5), this
Jacobian matrix can be simplified to:

Jac(x∗, y∗) =

(
− x∗

(x∗+αy∗+1)2 − αx∗

(x∗+αy∗+1)2

− βy∗

(y∗+βx∗+1)2 − y∗

(y∗+βx∗+1)2

)

Notice that the trace is negative. The determinant is given by:

det (Jac(x∗, y∗)) = (1− αβ)
x∗y∗

(x∗ + αy∗ + 1)2(y∗ + βx∗ + 1)2
,

which is negative by (3). Since the determinant of a matrix equals the product of its eigenvalues,
it follows that Jac(x∗, y∗) has one positive and one negative eigenvalue, and therefore the steady
state (x∗, y∗) is a saddle.

Phase portrait We illustrate the phase portrait of (1) − (2) in the right panel of Figure 1.
The orthant is divided into 4 regions, and the vector field in each region has a direction indicated
by the arrow. Notice that the positive x and y-axis are invariant sets: solutions starting there,
remain there for all times. We can perform a phase line analysis for equation (1) with y = 0: Using
the fact that γ1 ∈ (0, 1), we see that all solutions (except for the steady state at x = 0) converge
to 1

γ1
− 1. Similarly, all solutions of (2) with x = 0 (except for the steady state at y = 0) converge

to 1
γ2
− 1.

A more detailed analysis shows the existence of a so-called separatrix. This is a curve which
connects (0, 0) to (x∗, y∗), and goes from there off to infinity. All initial conditions starting on this
curve give rise to solutions converging to (x∗, y∗). Solutions starting on ”the left” of the separatrix
and in the interior of the orthant converge to steady state

(
0, 1

γ2
− 1
)

. Solutions starting on the

right converge to
(

1
γ1
− 1, 0

)
. This phenomenon of having two asymptotically stable steady states,

is often referred to as bistability.
Clearly, the location of the vector containing the initial concentrations of both proteins, is

crucial to their long-term fate. In general, exactly one of the proteins will vanish. Which one, is
completely determined at the start of the experiment.

Homework: Redo the analysis if we replace hypothesis H by

Hr
1
α

(
1
γ1
− 1
)
>

1
γ2
− 1 and

1
β

(
1
γ2
− 1
)
>

1
γ1
− 1.

Notice that the only difference with H is that the inequalities are reversed.
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