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In previous notes we considered the diffusion equation on R, and obtained the fundamental so-
lution. Here we study the equation on a finite interval [0, l] under two types of boundary conditions,
namely Dirichlet and Neumann boundary conditions.

Dirichlet Let
ut = Duxx, u(0, t) = u(l, t) = 0 for all t > 0. (1)

We will not specify an initial condition, and only attempt to find nonzero solutions with a particular
form using the method of separation of variables:

u(x, t) = X(x)T (t).

Plugging this into the diffusion equation we find that

T ′

DT
=
X ′′

X
= −λ (2)

for some constant λ which is yet to be determined. Then T (t) = T (0) e−Dλt, and since we are not
interested in trivial solutions we assume that T (0) 6= 0. Then u(0, t) = u(l, t) = 0 implies that

X(0) = X(l) = 0.

This leads to the boundary value problem (BVP):

X ′′ + λX = 0, X(0) = X(l) = 0.

There are 3 cases to consider: λ < 0,= 0, > 0.
Case 1: λ < 0. By standard results of linear 2nd order ODE’s we first find the general solution:

X(x) = c1 e
√
−λx +c2 e−

√
−λx .

The BC X(0) = X(l) = 0 then imply that c1 = c2 = 0, so we find a trivial solution which must be
discarded. In other words, λ cannot be negative.

Case 2: λ = 0. A similar analysis also leads to a trivial solution, and thus λ cannot be zero.
(check this as a weekly HW)

Case 3: λ > 0. Solving the ODE we find:

X(x) = c1 cos(
√
λx) + c2 sin(

√
λx).

The BC X(0) = X(l) = 0 implies that:

c1 = 0 and c2 sin(
√
λl) = 0.

To find a nontrivial solution X(x) we need that c2 6= 0, and this is only possible if we choose:

sin(
√
λl) = 0,

or equivalently:
λn = (nπ/l)2, n = 1, 2, . . .
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Summarizing, using the method of separation of variables we have found an infinite family of
solutions with a special form:

un(x, t) = Cn e−D(nπ/l)2t sin(nπx/l), n = 1, 2, . . . ,

where Cn is an arbitrary nonzero constant.
Remark 1: We see that for all n = 1, 2, . . . and all x ∈ (0, l) :

lim
t→∞

un(x, t) = 0,

which is similar to what we learned about the fundamental solution when studying the diffusion
equation on R.

Remark 2 Although we did not specify an initial condition u(x, 0) = u0(x), we see that we
could have done so: In the special case that the initial condition is:

u0(x) = C sin(mπx/l) for some m,

the solution that satisfies both (1) and the IC is:

u(x, t) = C e−D(mπ/l)2t sin(mπx/l).

By linearity of the equation, this can be extended to IC’s of the following form:

u0(x) =
m∑
j=1

Cj sin(jπx/l) for some m,

yielding the solution

u(x, t) =
m∑
j=1

Cj e−D(jπ/l)2t sin(jπx/l)

But what about a general initial condition:

u(x, 0) = u0(x),

where u0(x) does not have any of the particular forms above? This situation will not be discussed
here because it requires the development of Fourier series, a topic outside the scope of this course.
Nonetheless, some of the ideas are briefly sketched next. It turns out that under rather weak
conditions on u0(x), we can write u0(x) as a so-called Fourier series:

u0(x) =
∞∑
j=1

Cj sin(jπx/l),

where the so-called Fourier coefficients Cj can be calculated based on the function u0. The next
step is then to show that the solution of (1) with this IC is the following Fourier series:

u(x, t) =
∞∑
j=1

Cj e−D(jπ/l)2t sin(jπx/l).

Note the similarity between this formula and the one above for the particular IC, which is in fact
just a truncated Fourier series.
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Neumann Let
ut = Duxx, ux(0, t) = ux(l, t) = 0 for all t > 0. (3)

As before we don’t specify an initial condition, and we look for solutions using separation of
variables:

u(x, t) = X(x)T (t)

This leads to (2), and then in the same way to the following BVP

X ′′ + λX = 0, X ′(0) = X ′(l) = 0.

Again we consider 3 cases depending on the sign of λ.
Case 1: λ < 0. First we find the general solution:

X(x) = c1 e
√
−λx +c2 e−

√
−λx .

But since the BC are stated for the derivatives of X at x = 0, 1, we calculate:

X ′(x) =
√
−λ
(
c1 e
√
−λx−c2 e−

√
−λx

)
.

Then the BC X ′(0) = X ′(l) = 0 imply that c1 = c2 = 0. (verify this)
Case 2: λ = 0. In this case the general solution is:

X(x) = c1x+ c2,

and both BC lead to the same condition c1 = 0. Thus, for any c2 6= 0, we have that X(x) = c2
solves the BVP. Together with T (t) = T (0) e0t, this yields the following nonzero solution to (3):

u0(x.t) = C0, C0 6= 0.

Case 3: λ > 0. Solving the ODE we find:

X(x) = c1 cos(
√
λx) + c2 sin(

√
λx)⇒ X ′(x) =

√
λ
(
−c1 sin(

√
λx) + c2 cos(

√
λx)
)

The BC X ′(0) = X ′(l) = 0 imply that:

c2 = 0 and c1 sin(
√
λl) = 0.

To find a nontrivial solution X(x) we need that c1 6= 0, and this is only possible if we choose:

sin(
√
λl) = 0,

or equivalently:
λn = (nπ/l)2, n = 1, 2, . . .

We can combine the results from cases 2 and 3 into a single formula that describes an infinite
family of solutions of (3):

un(x, t) = Cn e−D(nπ/l)2t cos(nπx/l), n = 0, 1, 2, . . . ,

where Cn is an arbitrary nonzero constant. Compared to the Dirichlet case we have cos(nπx/l)
instead of sin(nπx/l). The reason for this difference is that the latter is zero in the boundary
points x = 0, 1, while the derivative of the former is zero there. A more important difference is
that the Neumann case yields a nonzero constant solution u0(x, t) = C0, while there are no nonzero
constant solutions in the Dirichlet case.

Remark 3 Just as in the Dirichlet case, we have that for all n = 1, 2, . . . and x ∈ (0, l):

lim
t→∞

un(x, t) = 0,

but for n = 0 we have that
lim
t→∞

u0(x, t) = C0 6= 0

Remark 4 Similar remarks we made in the Dirichlet case about IC’s can be made here.
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