Notes on the diffusion equation

Patrick De Leenheer*

March 27, 2009

In previous notes we considered the diffusion equation on \mathbb{R}, and obtained the fundamental solution. Here we study the equation on a finite interval $[0, l]$ under two types of boundary conditions, namely Dirichlet and Neumann boundary conditions.

Dirichlet Let

$$
\begin{equation*}
u_{t}=D u_{x x}, \quad u(0, t)=u(l, t)=0 \text { for all } t>0 \tag{1}
\end{equation*}
$$

We will not specify an initial condition, and only attempt to find nonzero solutions with a particular form using the method of separation of variables:

$$
u(x, t)=X(x) T(t)
$$

Plugging this into the diffusion equation we find that

$$
\begin{equation*}
\frac{T^{\prime}}{D T}=\frac{X^{\prime \prime}}{X}=-\lambda \tag{2}
\end{equation*}
$$

for some constant λ which is yet to be determined. Then $T(t)=T(0) \mathrm{e}^{-D \lambda t}$, and since we are not interested in trivial solutions we assume that $T(0) \neq 0$. Then $u(0, t)=u(l, t)=0$ implies that

$$
X(0)=X(l)=0
$$

This leads to the boundary value problem (BVP):

$$
X^{\prime \prime}+\lambda X=0, \quad X(0)=X(l)=0
$$

There are 3 cases to consider: $\lambda<0,=0,>0$.
Case 1: $\lambda<0$. By standard results of linear 2nd order ODE's we first find the general solution:

$$
X(x)=c_{1} \mathrm{e}^{\sqrt{-\lambda} x}+c_{2} \mathrm{e}^{-\sqrt{-\lambda} x}
$$

The $\mathrm{BC} X(0)=X(l)=0$ then imply that $c_{1}=c_{2}=0$, so we find a trivial solution which must be discarded. In other words, λ cannot be negative.

Case 2: $\lambda=0$. A similar analysis also leads to a trivial solution, and thus λ cannot be zero. (check this as a weekly HW)

Case 3: $\lambda>0$. Solving the ODE we find:

$$
X(x)=c_{1} \cos (\sqrt{\lambda} x)+c_{2} \sin (\sqrt{\lambda} x)
$$

The BC $X(0)=X(l)=0$ implies that:

$$
c_{1}=0 \text { and } c_{2} \sin (\sqrt{\lambda} l)=0
$$

To find a nontrivial solution $X(x)$ we need that $c_{2} \neq 0$, and this is only possible if we choose:

$$
\sin (\sqrt{\lambda} l)=0
$$

or equivalently:

$$
\lambda_{n}=(n \pi / l)^{2}, \quad n=1,2, \ldots
$$

[^0]Summarizing, using the method of separation of variables we have found an infinite family of solutions with a special form:

$$
u_{n}(x, t)=C_{n} \mathrm{e}^{-D(n \pi / l)^{2} t} \sin (n \pi x / l), \quad n=1,2, \ldots
$$

where C_{n} is an arbitrary nonzero constant.
Remark 1: We see that for all $n=1,2, \ldots$ and all $x \in(0, l)$:

$$
\lim _{t \rightarrow \infty} u_{n}(x, t)=0
$$

which is similar to what we learned about the fundamental solution when studying the diffusion equation on \mathbb{R}.

Remark 2 Although we did not specify an initial condition $u(x, 0)=u_{0}(x)$, we see that we could have done so: In the special case that the initial condition is:

$$
u_{0}(x)=C \sin (m \pi x / l) \text { for some } m,
$$

the solution that satisfies both (1) and the IC is:

$$
u(x, t)=C \mathrm{e}^{-D(m \pi / l)^{2} t} \sin (m \pi x / l)
$$

By linearity of the equation, this can be extended to IC's of the following form:

$$
u_{0}(x)=\sum_{j=1}^{m} C_{j} \sin (j \pi x / l) \text { for some } m
$$

yielding the solution

$$
u(x, t)=\sum_{j=1}^{m} C_{j} \mathrm{e}^{-D(j \pi / l)^{2} t} \sin (j \pi x / l)
$$

But what about a general initial condition:

$$
u(x, 0)=u_{0}(x)
$$

where $u_{0}(x)$ does not have any of the particular forms above? This situation will not be discussed here because it requires the development of Fourier series, a topic outside the scope of this course. Nonetheless, some of the ideas are briefly sketched next. It turns out that under rather weak conditions on $u_{0}(x)$, we can write $u_{0}(x)$ as a so-called Fourier series:

$$
u_{0}(x)=\sum_{j=1}^{\infty} C_{j} \sin (j \pi x / l)
$$

where the so-called Fourier coefficients C_{j} can be calculated based on the function u_{0}. The next step is then to show that the solution of (1) with this IC is the following Fourier series:

$$
u(x, t)=\sum_{j=1}^{\infty} C_{j} \mathrm{e}^{-D(j \pi / l)^{2} t} \sin (j \pi x / l)
$$

Note the similarity between this formula and the one above for the particular IC, which is in fact just a truncated Fourier series.

Neumann Let

$$
\begin{equation*}
u_{t}=D u_{x x}, \quad u_{x}(0, t)=u_{x}(l, t)=0 \text { for all } t>0 \tag{3}
\end{equation*}
$$

As before we don't specify an initial condition, and we look for solutions using separation of variables:

$$
u(x, t)=X(x) T(t)
$$

This leads to (2), and then in the same way to the following BVP

$$
X^{\prime \prime}+\lambda X=0, \quad X^{\prime}(0)=X^{\prime}(l)=0 .
$$

Again we consider 3 cases depending on the sign of λ.
Case 1: $\lambda<0$. First we find the general solution:

$$
X(x)=c_{1} \mathrm{e}^{\sqrt{-\lambda} x}+c_{2} \mathrm{e}^{-\sqrt{-\lambda} x}
$$

But since the BC are stated for the derivatives of X at $x=0,1$, we calculate:

$$
X^{\prime}(x)=\sqrt{-\lambda}\left(c_{1} \mathrm{e}^{\sqrt{-\lambda} x}-c_{2} \mathrm{e}^{-\sqrt{-\lambda} x}\right)
$$

Then the $\operatorname{BC} X^{\prime}(0)=X^{\prime}(l)=0$ imply that $c_{1}=c_{2}=0$. (verify this)
Case 2: $\lambda=0$. In this case the general solution is:

$$
X(x)=c_{1} x+c_{2},
$$

and both BC lead to the same condition $c_{1}=0$. Thus, for any $c_{2} \neq 0$, we have that $X(x)=c_{2}$ solves the BVP. Together with $T(t)=T(0) \mathrm{e}^{0 t}$, this yields the following nonzero solution to (3):

$$
u_{0}(x . t)=C_{0}, \quad C_{0} \neq 0
$$

Case 3: $\lambda>0$. Solving the ODE we find:

$$
X(x)=c_{1} \cos (\sqrt{\lambda} x)+c_{2} \sin (\sqrt{\lambda} x) \Rightarrow X^{\prime}(x)=\sqrt{\lambda}\left(-c_{1} \sin (\sqrt{\lambda} x)+c_{2} \cos (\sqrt{\lambda} x)\right)
$$

The BC $X^{\prime}(0)=X^{\prime}(l)=0$ imply that:

$$
c_{2}=0 \text { and } c_{1} \sin (\sqrt{\lambda} l)=0
$$

To find a nontrivial solution $X(x)$ we need that $c_{1} \neq 0$, and this is only possible if we choose:

$$
\sin (\sqrt{\lambda} l)=0
$$

or equivalently:

$$
\lambda_{n}=(n \pi / l)^{2}, \quad n=1,2, \ldots
$$

We can combine the results from cases 2 and 3 into a single formula that describes an infinite family of solutions of (3):

$$
u_{n}(x, t)=C_{n} \mathrm{e}^{-D(n \pi / l)^{2} t} \cos (n \pi x / l), \quad n=0,1,2, \ldots
$$

where C_{n} is an arbitrary nonzero constant. Compared to the Dirichlet case we have $\cos (n \pi x / l)$ instead of $\sin (n \pi x / l)$. The reason for this difference is that the latter is zero in the boundary points $x=0,1$, while the derivative of the former is zero there. A more important difference is that the Neumann case yields a nonzero constant solution $u_{0}(x, t)=C_{0}$, while there are no nonzero constant solutions in the Dirichlet case.

Remark 3 Just as in the Dirichlet case, we have that for all $n=1,2, \ldots$ and $x \in(0, l)$:

$$
\lim _{t \rightarrow \infty} u_{n}(x, t)=0
$$

but for $n=0$ we have that

$$
\lim _{t \rightarrow \infty} u_{0}(x, t)=C_{0} \neq 0
$$

Remark 4 Similar remarks we made in the Dirichlet case about IC's can be made here.

[^0]: *Email: deleenhe@math.ufl.edu. Department of Mathematics, University of Florida.

