Notes on the fundamental solution of the diffusion equation

Patrick De Leenheer*

March 23, 2009

On p. 105 of our text it is claimed that the diffusion equation on \mathbb{R} with the Dirac delta function as initial condition:

$$
u_{t}=D u_{x x}, \quad u(x, 0)=\delta_{0}(x)
$$

has the following solution:

$$
u(x, t)=\frac{1}{2 \sqrt{\pi D t}} \mathrm{e}^{-\frac{x^{2}}{4 D t}},
$$

also called the fundamental solution.
It is not shown how this solution is obtained, and these notes will outline a way to do it.
Dilation Let $u(x, t)$ be any solution of $u_{t}=u_{x x}$. Then given a parameter $m \neq 0$, we see that $u\left(m x, m^{2} t\right)$ is also a solution (just plug in the latter function in the equation and see that it satisfies it, regardless of the value of $m!$). This suggests we might attempt to find solutions that depend on the ratio x^{2} / t instead of on the pair (x, t). Therefore, we let $u(x, t)$ be of the following form:

$$
u(x, t)=v\left(\frac{x^{2}}{t}\right)
$$

for some appropriate function v, yet to be determined. In this case,

$$
u_{t}=-\frac{x^{2}}{t^{2}} v^{\prime}\left(\frac{x^{2}}{t}\right) \text { and } u_{x}=\frac{2 x}{t} v^{\prime}\left(\frac{x^{2}}{t}\right) \text { and } u_{x x}=\frac{2}{t} v^{\prime}\left(\frac{x^{2}}{t}\right)+\frac{4 x^{2}}{t^{2}} v^{\prime \prime}\left(\frac{x^{2}}{t}\right),
$$

and the function v should satisfy the following ODE:

$$
D \frac{4 x^{2}}{t^{2}} v^{\prime \prime}+\left(D \frac{2}{t}+\frac{x^{2}}{t^{2}}\right) v^{\prime}=0
$$

or with $y=x^{2} / t$:

$$
v^{\prime \prime}(y)+\left(\frac{1}{2 y}+\frac{1}{4 D}\right) v^{\prime}(y)=0
$$

Integrating once we find that

$$
v^{\prime}(y)=c_{1} \mathrm{e}^{-\int\left(\frac{1}{2 y}+\frac{1}{4 D}\right) d y}=c_{1} y^{-\frac{1}{2}} \mathrm{e}^{-\frac{y}{4 D}},
$$

and integrating once more that

$$
v(y)=c_{1} \int_{0}^{y} z^{-\frac{1}{2}} \mathrm{e}^{-\frac{z}{4 D}} d z+c_{2} .
$$

Thus, the diffusion equation $u_{t}=D u_{x x}$ has general solution

$$
u(x, t)=v\left(\frac{x^{2}}{t}\right)=c_{1} \int_{0}^{\frac{x^{2}}{t}} z^{-\frac{1}{2}} \mathrm{e}^{-\frac{z}{4 D}} d z+c_{2},
$$

with two integration constants c_{1} and c_{2}.

[^0]We now observe that if $u(x, t)$ is a solution of the diffusion equation, then so is $u_{x}(x, t)$ by linearity of the equation. For the general solution found above this yields another solution $U(x, t)=$ $u_{x}(x, t)$:

$$
U(x, t)=c_{1} \frac{2 x}{t}\left(\frac{x^{2}}{t}\right)^{-\frac{1}{2}} \mathrm{e}^{-\frac{x^{2}}{4 D t}}=c_{1} \frac{2}{\sqrt{t}} \mathrm{e}^{-\frac{x^{2}}{4 D t}}
$$

The integration constant c_{1} is chosen such that $U(x, t)$ satisfies:

$$
\int_{-\infty}^{+\infty} U(x, t) d x=1
$$

for all $t>0$.
This constraint is motivated by the fact that it also holds for $t=0$:

$$
\int_{-\infty}^{+\infty} u_{0}(x) d x=\int_{-\infty}^{+\infty} \delta_{0}(x) d x=1
$$

and that the diffusion equation models movement of individuals (not deaths or births), so that the total population should not change over time.

Thus, to find c_{1}, we let

$$
\begin{aligned}
1 & =\int_{-\infty}^{+\infty} \frac{2 c_{1}}{\sqrt{t}} \mathrm{e}^{-\frac{x^{2}}{4 D t}} d x \\
& =\frac{4 c_{1}}{\sqrt{t}} \int_{0}^{+\infty} \mathrm{e}^{-\left(\frac{x}{2 \sqrt{D t}}\right)^{2}} d x \\
& =8 \sqrt{D} c_{1} \int_{0}^{+\infty} \mathrm{e}^{-z^{2}} d z \\
& =8 \sqrt{D} c_{1} \frac{\sqrt{\pi}}{2}
\end{aligned}
$$

In the first step we used the fact that the integrand is an even function (so the integral equals twice the integral of the function over the interval $[0,+\infty)$). In the second step we used the substitution $z=x /(2 \sqrt{D t})$, and in the last step we used the famous integral ${ }^{1}$

$$
\int_{0}^{+\infty} \mathrm{e}^{-z^{2}} d z=\frac{\sqrt{\pi}}{2}
$$

Solving for c_{1} :

$$
c_{1}=\frac{1}{4 \sqrt{D \pi}}
$$

and plugging this back into the formula of $U(x, t)$, we finally arrive at the fundamental solution.
HW Now do problem \# 4.5.2 of our text. Part (a) has of course just been shown in these notes, but you should not use this information when solving this part. Replace part (b) by the following: "(b) Make sure that $g(x, t) \geq 0$ for all $t>0$ and $x \in \mathbb{R}$, and show that

$$
\lim _{t \rightarrow 0+} g(x, t)=0 \text { if } x \neq 0, \text { and } \lim _{t \rightarrow 0+} g(x, t)=+\infty \text { if } x=0
$$

Moreover, show that

$$
\lim _{x \rightarrow \pm \infty} g(x, t)=0, \text { for all } t>0 . "
$$

HW This problem justifies the claim made above that the total population does not change over time. Let $u(x, t)$ be a solution of the diffusion equation $u_{t}=u_{x x}$ with the property that for all $t>0$:

$$
\lim _{x \rightarrow \pm \infty} u(x, t)=\lim _{x \rightarrow \pm \infty} u_{x}(x, t)=0
$$

[^1][This is a very natural assumption. Notice in particular that these properties hold for the fundamental solution.]

Show that

$$
\frac{d}{d t}\left(\int_{-\infty}^{+\infty} u(x, t) d x\right)=0
$$

from which the claim follows.
Hint: Rewrite the above quantity as $\int_{-\infty}^{+\infty} u_{t}(x, t) d x$, and now use the diffusion equation, integration by parts and some of the conditions on $u(x, t)$ given above.

[^0]: *Email: deleenhe@math.ufl.edu. Department of Mathematics, University of Florida.

[^1]: ${ }^{1}$ Proof: The trick is to first calculate the square of this integral, and then to go to polar coordinates:
 $\left(\int_{0}^{\infty} \mathrm{e}^{-z^{2}} d z\right)^{2}=\left(\int_{0}^{\infty} \mathrm{e}^{-x^{2}} d x\right)\left(\int_{0}^{\infty} \mathrm{e}^{-y^{2}} d y\right)=\int_{0}^{\infty} \int_{0}^{\infty} \mathrm{e}^{-x^{2}-y^{2}} d x d y=\int_{0}^{\frac{\pi}{2}} \int_{0}^{+\infty} \mathrm{e}^{-r^{2}} r d r d \theta=\frac{\pi}{4}$.

