Homework assignment 3^{*}

Due date: Monday April 13, 2009.

1. In class we solved McKendrick's problem:

$$
u_{a}(a, t)+u_{t}(a, t)=-d(a) u(a, t)
$$

with

$$
B C: u(0, t)=B(t), \text { and } I C: u(a, 0)=u_{0}(a)
$$

Here we consider the special case where the survival function is exponential:

$$
l(a)=\mathrm{e}^{-\mu a}, \text { for some } \mu>0
$$

- Find the instantaneous death rate $d(a)$.
- Find the basic reproduction number R_{0} (i.e. the expected number of offspring per female over her lifetime) if the maternity function is given by:

$$
m(a)=\left\{\begin{array}{l}
0, a \in[0, \mu / 2] \\
m, a \in(\mu / 2,3 \mu / 2) \\
0, a>3 \mu / 2
\end{array}\right.
$$

- Assuming that the age distribution is such that for all $t>0$:

$$
\lim _{a \rightarrow \infty} u(a, t)=0
$$

show that the total population

$$
N(t)=\int_{0}^{\infty} u(a, t) d a
$$

satisfies the linear ODE:

$$
\dot{N}(t)=B(t)-\mu N(t) .
$$

[^0]
[^0]: *MAP 4484; Instructor: Patrick De Leenheer.

