Exam 1: MAP 4484*

February 6, 2009

Name:

Student ID:
This is a closed book exam and the use of calculators is not allowed.

1. A population model is described by the following equation:

$$
x_{n+1}=\frac{2}{1+x_{n}}
$$

- Calculate all fixed points and all period 2 points (if any).

Fixed points are solutions of:

$$
x=\frac{2}{1+x},
$$

or equivalently of:

$$
x^{2}+x-2=0 .
$$

This quadratic equation has two solutions:

$$
x_{1,2}=\frac{-1 \pm 3}{2}=1,-2
$$

We discard the negative solution, and thus there is a single fixed point:

$$
x^{*}=1 .
$$

Period two points must satisfy:

$$
x=\frac{2}{1+\frac{2}{1+x}},
$$

which reduces to

$$
x^{2}+x-2=0,
$$

the same quadratic equation we solved before. Thus, there are no period two points, as the only solution of the above quadratic equation only yields the fixed point determined earlier.

- What happens to the solution sequences as $n \rightarrow \infty$? (Hint: Use a global result from our cobwebbing notes)
Since the function $f(x)=2 /(1+x)$ is decreasing and bounded, and since there are no period two points, we conclude that all solutions converge to the unique fixed point $x^{*}=1$.
- Notice that if $x_{0}=0$, then $x_{1}=2$. Thus from no individuals, we go to 2 individuals. What could cause this?
Immigration,...

[^0]2. A population model is described by the following equation:
$$
x_{n+1}=\frac{3 x_{n}}{1+2 x_{n}^{2}} x_{n}
$$

- Determine all fixed points and determine their stability based on linearization.

Fixed points: $x=0$ clearly, and positive solutions to:

$$
1=\frac{3 x}{1+2 x^{2}}
$$

or equivalently to the quadratic equation:

$$
2 x^{2}-3 x+1=0
$$

Solutions are:

$$
x=\frac{3 \pm 1}{4}=1, \frac{1}{2}
$$

Linearizing:

$$
f^{\prime}=\frac{6 x\left(1+2 x^{2}\right)-3 x^{2}(4 x)}{\left(1+2 x^{2}\right)^{2}}=\frac{6 x}{\left(1+2 x^{2}\right)^{2}}
$$

yields:

$$
\begin{aligned}
& f^{\prime}(1)=\frac{6}{9} \text { so } x=1 \text { is asymptotically stable and } \\
& f^{\prime}\left(\frac{1}{2}\right)=\frac{3}{\left(1+\frac{1}{2}\right)^{2}}=\frac{4}{3} \text { so } x=\frac{1}{2} \text { is unstable } \\
& f^{\prime}(0)=0, \text { so } x=0 \text { is asymptotically stable. }
\end{aligned}
$$

- Perform cobwebbing, and verify if your results agree with the stability analysis carried out in the previous item.
The function $\frac{3 x_{n}}{1+2 x_{n}^{2}} x_{n}$ is increasing, zero at zero, and has limit $3 / 2$ as $x \rightarrow \infty$. The diagonal intersects this graph in the three fixed points, $0, \frac{1}{2}$ and 1 .
All solutions in $\left(0, \frac{1}{2}\right)$ converge to 0 . All solutions in $\left(\frac{1}{2}, 1\right)$ converge to 1 , and all solutions in $(1,+\infty)$ converge to 1 .
- What happens to the solution sequences as $n \rightarrow \infty$? (Hint: Use a global result from our cobwebbing notes)
All solutions in $\left(0, \frac{1}{2}\right)$ converge to 0 . All solutions in $\left(\frac{1}{2}, 1\right)$ converge to 1 , and all solutions in $(1,+\infty)$ converge to 1 .
- Explain why this model could be called a "population switch".

Depending on the value of the initial population, solutions either converge to 0 or to 1 (except if they start in the fixed point $x=\frac{1}{2}$ of course).
3. The following system models a population of parasites and hosts:

$$
\begin{aligned}
x_{n+1} & =2 \mathrm{e}^{-y_{n}} x_{n} \\
y_{n+1} & =\left(1-\mathrm{e}^{-y_{n}}\right) x_{n}
\end{aligned}
$$

Note: A more general form of this system is described in our textbook.

- Which variable represents the number of hosts at time n, x_{n} or y_{n} ? Explain your answer. x_{n} are hosts, as the presence of parasites diminishes growth from 2 to $2 \mathrm{e}^{-y_{n}}$.
- Find all fixed points, and determine their stability based on linearization. (Hint: You may use the fact that $\left.\ln (2)>\frac{1}{2}\right)$
$(0,0)$ is clearly a fixed point. Other fixed points solve:

$$
\begin{aligned}
1 & =2 \mathrm{e}^{-y} \Rightarrow y=\ln (2) \\
y & =\left(1-\mathrm{e}^{-y}\right) x \Rightarrow x=\frac{\ln (2)}{\frac{1}{2}}=2 \ln (2)
\end{aligned}
$$

so $(2 \ln (2), \ln (2))$ is a second fixed point.
Jacobian matrix:

$$
J a c(x, y)=\left(\begin{array}{cc}
2 \mathrm{e}^{-y} & -2 \mathrm{e}^{-y} x \\
1-\mathrm{e}^{-y} & +\mathrm{e}^{-y} x
\end{array}\right)
$$

Evaluating at the fixed points:

$$
\begin{aligned}
\operatorname{Jac}(0,0)= & \left(\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right) \Rightarrow(0,0) \text { is unstable by eigenvalue } 2, \\
& \operatorname{Jac}(2 \ln (2), \ln (2))=\left(\begin{array}{cc}
1 & -2 \ln (2) \\
\frac{1}{2} & \ln (2)
\end{array}\right)
\end{aligned}
$$

Checking the first Jury condition:
$|t r|=|1+\ln (2)|=1+\ln (2)<1+$ det $=1+(\ln (2)+\ln (2))=1+2 \ln (2)$ is clearly satisfied.
The second Jury condition:

$$
1+\operatorname{det}=1+2 \ln (2)<2 \text { fails by the Hint. }
$$

Thus, $(2 \ln (2), \ln (2))$ is unstable as well.

[^0]: *Instructor: Patrick De Leenheer.

