Homework assignment 3^{*}

February 7, 2006

1. Using the method of characteristics, solve the following equation:

$$
\frac{\partial x}{\partial a}+\mathrm{e}^{-t} \frac{\partial x}{\partial t}=-d x
$$

Here d is a positive constant and a and t are interpreted as age and time. The initial and boundary conditions (both are supposedly known) are:

$$
x(a, 0)=x_{0}(a), \quad x(0, t)=b(t)
$$

2. This problem explores some properties of a discrete-time random walk on the integers \mathbb{Z}.

Let λ be the probability to move right and $\mu=1-\lambda$ the probability to move left (so a move must be made at each instant of time). Let $p_{n}(t)$ be the probability that at time t the position of the random walker is n. Assume that the random walk starts at $n=0$, so that $p_{0}(0)=1$ and $p_{i}(0)=0$ for $i \neq 0$. First show that

$$
p_{n}(t+1)=\lambda p_{n-1}(t)+\mu p_{n+1}(t), \quad n \in \mathbb{Z}
$$

Second, using the method of the generating function, determine the mean $m(t)$ and variance $\sigma^{2}(t)$ of the position of the random walker at time t. Verify the plausibility of your results by considering the case $\lambda=\mu=0.5$.
3. In class we showed how to solve the renewal equation:

$$
b(t)=\int_{0}^{t} b(t-a) l(a) m(a) d a+\int_{0}^{\infty} u_{0}(r) \frac{l(r+t)}{l(r)} m(t+r) d r .
$$

Unfortunately our method was based on a contraction mapping argument which only shows that a unique solution $b(t)$ exists. Here we consider the following special case:

$$
d(a)=d>0, \quad m(a)=m>0, \text { and } U_{0}:=\int_{0}^{\infty} u_{0}(a) d a
$$

In other words, death rate and maturity function are assumed to be constant and the total initial population is U_{0}. Determine $b(t)$ explicitely and calculate $\lim _{t \rightarrow \infty} b(t)$ (Hint: Use Laplace transforms to calculate $b(t)$). How do the values of the parameters affect the value of this limit? Calculate R_{0} and discuss how the parameters affect it. Explain your findings.
4. The characteristic equation associated to McKendrick's equation is:

$$
F(\lambda)=1
$$

where $F(\lambda):=\int_{0}^{\infty} f(a) \mathrm{e}^{-\lambda a} d a$ is the Laplace transform of the net maternity function $f(a)=$ $l(a) m(a)$. Assume that λ is a real variable and that f is zero outside $[\alpha, \beta](\alpha<\beta$ are both positive) and positive and continuous on $[\alpha, \beta]$. Prove that

- F is continuous and strictly decreasing (ie $\lambda_{1}<\lambda_{2}$ implies that $F\left(\lambda_{2}\right)<F\left(\lambda_{1}\right)$).
- $\lim _{\lambda \rightarrow-\infty} F(\lambda)=+\infty$ and $\lim _{\lambda \rightarrow+\infty} F(\lambda)=0$.
- (Optional: For people with a background in complex variables) Let λ^{*} be the unique real root of the characteristic equation. Now assume that λ is a complex variable. Show that λ^{*} is dominant in the sense that every other (complex) root of the characteristic equation has a real part strictly less than λ^{*}.

[^0]
[^0]: *MAP 4484/5489; Instructor: Patrick De Leenheer.

