Proof of Proposition 6.17 (Ratio Test)

Patrick De Leenheer

February 14, 2005

Proposition 1. Let $\sum_{n=1}^{\infty} a_{n}$ be a series with

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=l . \tag{1}
\end{equation*}
$$

If $l<1$, then the series $\sum_{n=1}^{\infty} a_{n}$ converges. If $l>1$, then the series diverges.
Proof. Case 1: $l<1$.
From (1) follows that if we choose $\epsilon>0$ small enough such that $q:=l+\epsilon<1$, then there is some N, such that if $n>N$,

$$
\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}<q \text {. }
$$

More specifically,

$$
\left|a_{N+2}\right|<q\left|a_{N+1}\right|,\left|a_{N+3}\right|<q\left|a_{N+2}\right|<q^{2}\left|a_{N+1}\right|, \ldots,\left|a_{N+m}\right|<q^{m-1}\left|a_{N+1}\right|, \forall m>1 .
$$

Now, since $0<q<1$, it follows (geometric series!) that

$$
\sum_{m=2}^{\infty} q^{m-1}\left|a_{N+1}\right|=\left(\frac{1}{1-q}-1\right)\left|a_{N+1}\right|
$$

and then the comparison test yields that $\sum_{m=2}^{\infty} a_{N+m}$ converges. This implies that the series $\sum_{n=1}^{\infty} a_{n}$ converges too because $\sum_{n=1}^{\infty} a_{n}=a_{1}+a_{2}+\cdots+a_{N+1}+\sum_{m=2}^{\infty} a_{N+m}$.

Case 2: $l>1$. This time choose $\epsilon>0$ small enough so that $q:=l-\epsilon>1$. Then there is some N such that if $n>N$,

$$
\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}>q
$$

In particular,

$$
\left|a_{N+2}\right|>q\left|a_{N+1}\right|,\left|a_{N+3}\right|>q\left|a_{N+2}\right|>q^{2}\left|a_{N+1}\right|, \ldots,\left|a_{N+m}\right|>q^{m-1}\left|a_{N+1}\right|, \forall m>1 .
$$

Since $q>1$, it is clear that it is impossible that $\lim _{n \rightarrow \infty} a_{n}=0$ (in fact, $\lim _{n \rightarrow \infty}\left|a_{n}\right|=+\infty!$), which is necessary for convergence of the series $\sum_{n=1}^{\infty} a_{n}$ (see Theorem 6.9).

