
Second part of Excercise 12.21 (Newton-Rhapson’s method)

Patrick De Leenheer

April 5, 2005

We’ve already proved in class that if I is an open interval, and if f : I → R is convex and
differentiable in I, then for ξ ∈ I,

f(x)− f(ξ) ≥ f ′(ξ)(x− ξ), ∀x ∈ I. (1)

Now suppose that φ : R → R is strictly increasing, convex and differentiable and φ(ξ) = 0. Let
x1 > ξ, and consider the iteration

xn+1 = xn −
φ(xn)

φ′(xn)
, n = 1, 2, . . . (2)

Then prove that the sequence xn → ξ as n→∞.

Remark 1. Observe that ξ is the unique root of φ, since φ is strictly increasing. Also notice that
this result yields an algorithm to find an approximation of the root ξ of the function φ (only an
approximation, because we assume that an algorithm terminates after a finite number of steps).

Proof. We will first show that the sequence xn is decreasing and bounded below (by ξ) and therefore
converges to some l (by Theorem 4.17). Then we will show that l is in fact ξ, at which point we’ll
be done.

To prove the first assertion we will prove the following

If n is such that ξ ≤ xn, then ξ ≤ xn+1 ≤ xn.

Proof of claim: If ξ ≤ xn, then 0 = φ(ξ) ≤ φ(xn) since φ is increasing. Moreover, φ′(xn) must be
positive. This is because φ′ is positive on R. To see this, assume on the contrary that there is some
real number c where φ′(c) = 0 (notice that φ′ can not be negative since φ is strictly increasing,
hence φ′ ≥ 0 on R). Then φ′(y) would also be 0 for all y ≤ c since φ′ is increasing on R (this
follows from Theorem 12.18 since φ is convex). But this would imply that φ would be constant on
the interval (−∞, c] (by Theorem 11.17), which would contradict that φ is strictly increasing.

So we have that φ(xn) ≥ 0 and φ′(xn) > 0 and then (2) implies that xn+1 ≤ xn.
To prove that ξ ≤ xn+1, consider (1) with f = φ, x = xn+1 and ξ = xn. Then using (2), we

find that
φ(xn+1)− φ(xn) ≥ φ′(xn)(xn+1 − xn) = −φ(xn),

and therefore that φ(xn+1) ≥ 0 = φ(ξ). This implies that xn+1 ≥ ξ (since φ is strictly increasing),
so we have established the claim.

So knowing that our claim holds, how does one actually prove the first assertion? Notice that
if we can show that the “If” part of the claim holds for all n, then the first assertion follows. Well,
for n = 1 this “If” part is obviously true since we were given that x1 > ξ. Using the above claim
recursively, we see that the “If” part holds for all n = 2, 3, . . . .

To prove the second assertion, let l be the limit of the decreasing sequence xn. Continuity of φ
implies that φ(xn) → φ(l) as n → ∞. Also, since φ′ is increasing and bounded below (by 0), the
right limit

lim
x→l+

φ′(x)

exists (Theorem 12.4) and we denote it by φ′(l+). Note that φ′(l+) > 0 (if it were 0 we could find
a real number c < l where φ′(c) = 0, which is impossible as shown above). Then Theorem 8.9 and
the remark following it show that

φ′(xn)→ φ′(l+) as n→∞.
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Taking limits for n→∞ in (2) finally yields

l = l −
φ(l)

φ′(l+)
,

and therefore φ(l) = 0 from which follows that l = ξ.
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