Exercise 9.17(6) (Contraction mapping)

Patrick De Leenheer

February 18, 2005

Proposition 1. Let $f: I \to I$ be continuous on the closed interval I and assume that there exists $0 < \alpha < 1$ such that:

$$\forall x, y \in I: |f(x) - f(y)| \le \alpha |x - y| \tag{1}$$

Then f is continuous.

Pick $x_1 \in I$ and construct the sequence $\{x_n\}$ as follows:

$$x_n = f(x_{n-1}), \ \forall n > 1.$$

Then there is some $x^* \in I$ such that $x_n \to x^*$ as $n \to \infty$. Moreover, $f(x^*) = x^*$ (that is, f has a fixed point in I).

Proof. Fix $x, y \in I$ and $\epsilon > 0$, and choose $\delta = \epsilon/\alpha$. Then if $|x - y| < \delta$, it follows from (1) that $|f(x) - f(y)| \le \alpha |x - y|$ and thus that $|f(x) - f(y)| < \alpha \delta = \epsilon$. This implies that f is continuous on I.

Pick $x_1 \in I$ and construct the sequence $\{x_n\}$ as outlined above. We will show that $\{x_n\}$ is a Cauchy sequence. If we do that, then it follows that $x_n \to x^*$ as $n \to \infty$ for some x^* . Since I is closed, there must hold that $x^* \in I$. Now, since f is continuous on I, it follows that $f(x_n) \to f(x^*)$ as $n \to \infty$. But $f(x_n) = x_{n-1}$ and $x_{n-1} \to x^*$ as $n \to \infty$. This implies that $f(x^*) = x^*$.

So let us conclude by showing that $\{x_n\}$ is a Cauchy sequence. To do so, we must prove that

 $\forall \epsilon > 0, \exists N, \text{ such that if } n, m > N, \text{ then } |f(x_n) - f(x_m)| < \epsilon.$

Fix $\epsilon > 0$ and assume (without loss of generality) that n > m. Then by repeated application of the triangle inequality,

$$|x_n - x_m| \le |x_n - x_{n-1}| + |x_{n-1} - x_{n-2}| + \dots + |x_{m+1} - x_m|.$$
(2)

An application of (1) shows that if n > 2, then

$$|x_n - x_{n-1}| = |f(x_{n-1}) - f(x_{n-2})| \le \alpha |x_{n-1} - x_{n-2}|,$$

and thus that

$$|x_n - x_{n-1}| \le \alpha^{n-2} |x_2 - x_1|.$$
(3)

Therefore, applying (3) to each term in (2), shows that

$$|x_n - x_m| \le (\alpha^{n-2} + \alpha^{n-3} + \dots + \alpha^{(m+1)-2})|x_2 - x_1| = \alpha^{m-1}(\alpha^{(n-2)-(m-1)} + \alpha^{(n-3)-(m-1)} + \dots + 1)|x_2 - x_1|$$

Since $\alpha \in (0,1)$, the geometric series $\sum_{k=0}^{\infty} \alpha^k$ converges to $1/(1-\alpha)$ and thus we have that

$$|x_n - x_m| \le \alpha^{m-1} \frac{1}{1 - \alpha} |x_2 - x_1|.$$

We can choose N large enough so that

$$\alpha^{N-1}\frac{1}{1-\alpha}|x_2-x_1|<\epsilon.$$

Then is follows that for n, m > N,

$$|x_n - x_m| < \epsilon,$$

and thus that $\{x_n\}$ is a Cauchy sequence, concluding the proof of this theorem.