Final Exam MTH 361*

December 8, 2016

Name:

This is a closed book exam and the use calculators is not permitted. You can use a 1-sided formula sheet with 25 formulas. I will check your sheets during the final.

The first 5 problems are multiple choice problems, each worth 5 points. Please circle the right answer (there is exactly one for each problem). The next 5 problems are worth 10 points each, and will be graded with partial credit. Make sure to accurately justify your answers for these problems.

1. Suppose that X and Y have the following distribution

X	$\mathrm{Y}=-1$	0	1
1	0	0.25	0
0	0.25	0.25	0.25

Then

- The covariance of X and Y is nonzero, and X and Y are independent.
- The covariance of X and Y is zero, and X and Y are independent.
- The covariance of X and Y is zero, and X and Y are not independent.
- The covariance of X and Y is nonzero, and X and Y are not independent.

2. Pick 2 cards from a deck of 52 cards. The probability that the second card is a King is

- $4 / 51$
- $1 / 13$
- 3/52
- None of the above.

[^0]3. Suppose that X is a Poisson random variable with parameter $\lambda=4$. Use Chebyshev's inequality to estimate $P(|X-4| \geq 2)$, and also determine the exact probability.

- Estimate 1; Exact $1-\sum_{k=3}^{5} \mathrm{e}^{-4} \frac{4^{k}}{k!}$
- Estimate 1; Exact $1-\sum_{k=2}^{6} \mathrm{e}^{-4} \frac{4^{k}}{k!}$
- Estimate $1 / 2$; Exact $1-\sum_{k=3}^{5} \mathrm{e}^{-4} \frac{4^{k}}{k!}$
- Estimate $1 / 2$; Exact $1-\sum_{k=2}^{6} \mathrm{e}^{-4} \frac{4^{k}}{k!}$

4. Let k be a given positive integer. Let T_{k} be the number of independent trials that are needed to obtain k successes, where the probability that one trial is successful is p. Then $E\left(T_{k}\right)$ equals:

- $k(1-p)$
- $k p$
- k / p
- $k /(1-p)$

5. In the College of Science of OSU, 60% of the scientists read Nature, 50% read Science and 40% read PNAS, 30% read Nature and Science, 20% read Science and PNAS, and 10% read Nature and PNAS. No scientists read all 3 journals. What percentage of scientists read at least one of these journals?

- 70%
- 80%
- 85%
- 90%

6. In a course with a MWF schedule, a student goes to class on M and on W with probability 0.8 , but only with probability 0.4 on F . What is the probability that today is F, given that the student is in class?
7. Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent and identically distributed random variables with distribution function $F(x)$.
(a) Find the distribution function of the random variable $Y=\min \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$.
(b) Suppose that $X_{1}, X_{2}, \ldots, X_{n}$ are exponentially distributed random variables with parameter λ. Then what is the distribution function of the random variable $Y=\min \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$?
8. The Golden State Warriors and the Cleveland Cavaliers played the NBA Finals. (This is a best of 7 series; the team that wins 4 games first, wins the finals). Assuming that the Warriors win a game with probability 0.45 , and the Cavaliers win a game with probability 0.55 , what is the probability that the Cavaliers win the Finals?
9. In the 2015-2016 NBA season the Golden State Warriors set a record by winning 73 games, and losing only 9 games. Assuming that they win each game with probability 0.9 , and that the result of all 82 games played is independent,

- Give an exact formula for the probability of winning at least 73 games out of 82 games played.
- Approximate the probability above by using a normal approximation. (Write your answer in terms of Φ, the distribution function of the standard normal distribution, but do not attempt to evaluate this function. $)^{1}$

10. Suppose that X and Y have joint density function $f(x, y)=2$ for $0<x<y<1$. Calculate $P(Y-X>z)$, where z is an arbitrary real number.
[^1]
[^0]: *Instructor: Patrick De Leenheer.

[^1]: ${ }^{1}$ Recall that $\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} \mathrm{e}^{-y^{2} / 2} d y$

