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Abstract

We prove the zero deficiency theorem in Theorems 4 and 8 below.

1 Chemical reaction networks (CRN’s)

Notation When x, y ∈ Rn, we abuse notation and define the vector xy by taking entrywise
products of the vectors x and y. The natural inner product of two vectors x and y in the Euclidean
space Rn is denoted as < x, y >.

When x ∈ int(Rn+), we let ln(x) denote the n vector obtained from x by taking entrywise
natural logarithms. Similarly, for y ∈ Rn, we let ey denote the n vector obtained from y by taking
entrywise exponentials. If x ∈ Rn+ and a ∈ Zn+, then we define

xa :=
n∏
i=1

xaii ,

where we define 0ai := 1 if ai > 0 and x0
i := 1 for all xi ≥ 0.

A CRN is given by a set of r reactions between p complexes involving n species. Each complex
is a linear combination of the species with non-negative integer coefficients. The concentrations
obey:

ẋ = SER(x), (1)

where S is a n × p matrix in which the jth column contains the stoichiometric coefficients of the
species in the jth complex, and E describes the reactions taking place between the complexes.
This matrix is a p× r matrix for which each column corresponds to a unique reaction, and it has
exactly one entry equal to +1, one entry equal to −1 and the other entries equal to 0. The ith
entry of the kth column of E is −1 (+1) if the kth reaction has the ith complex as its reaction
(product) complex. Notice in particular that all columns of E add to 0:

1TE = 0.

Finally, the vector R(x) is the r vector containing the reaction rates of the various reactions. We
assume that this vector has non-negative entries that depend in some sufficiently smooth way on
the state vector x, and that if x ∈ int(Rn+), then R(x) > 0. In addition we assume that Ri(x) = 0
if xj = 0 for some species j appearing in the reaction complex of reaction i. This is a natural
assumption which simply expresses that the reaction does not take place if one of its reactants is
missing. As a consequence it is not hard to prove that

Fact 1. Rn+ is forward invariant for (1).

The proof is omitted but relies on the easily established fact that if xi = 0, then the ith component
of the vector field of (1) is non-negative. The geometrical interpretation of this condition is that
the vector field does not point away from R

n
+ on its boundary. The result should now be intuitively

clear.
∗These notes were written for the graduate students of UF taking MAP 6487 Biomath Seminar I in the fall of

2009.
†Email: deleenhe@math.ufl.edu. Department of Mathematics, University of Florida.
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By setting
Γ = SE,

we obtain a second description for the evolution of the species concentrations:

ẋ = ΓR(x) (2)

The matrix Γ is usually called the stoichiometric matrix. Perhaps this name should have been
reserved for the matrix S. Notice that every column of Γ is the differences of two columns of the
matrix S. For some purposes, description (1) is useful, but for others (2) is. Later we will see a
third way to represent the ODE for the concentrations.

A second invariance result follows immediately since (2) implies that any solution x(t) must
satisfy:

x(t) = x(0) + Γ
∫ t

0

R(x(s))ds,

hence solutions are restricted to lie on affine subspaces of the form {x + Γz | z ∈ Rr}, for some
given x ∈ Rn. These are called stoichiometry classes, and positive stoichiometry classes if they
contain a positive vector.

Fact 2. Each stoichiometry class is invariant for (2).

2 Complex balanced CRN

It turns out to be useful to first introduce the directed graph whose vertices are the complexes of
the CRN, and whose directed edges are the reactions between these complexes. The matrix E is
then nothing but what in graph theory is called the incidence matrix of the directed graph. We
will use a few more concepts from graph theory. First, we say that a directed graph is strongly
connected if there is a directed path from each vertex to each other vertex. (A directed path is a
finite, ordered, alternating sequence of vertices and directed edges v1, e1, v2, e2, . . . , ek−1, vk with
k > 1). A directed cycle is a closed directed path, ie it is a directed path in which the first and
final vertices coincide (v1 = vk). A simple directed cycle is a directed cycle in which all vertices are
pairwise distinct, except for the first and last vertex. For each directed graph, there is an associated
undirected graph, obtained by dropping the direction of the edges. For such an undirected graph,
we can define the notions of an undirected path, cycle and simple cycle in a similar way as we did
for their directed cousins.

We can partition the vertices of a directed graph into its components. These are the equivalence
classes of the equivalence relation defined by declaring that two vertices are equivalent if there is an
undirected path between them. When there is one component, we say that the graph is connected.
Otherwise it is said to be disconnected. A stronger notion are the strong components which are the
equivalence classes of the equivalence relation defined by declaring that two vertices are equivalent
if there is a directed path from the first to the second vertex, and a directed path from the second
to the first as well. When every component is a strong component, we say that the directed graph
is weakly reversible (the same terminology is also used for the corresponding CRN).

The incidence matrix E has the following algebraic properties.

Lemma 1. Let the directed graph associated to E have l components. Then

dim(Im(E)) = p− l, dim(Ker(E)) = r − (p− l)

Moreover, if the directed graph is weakly reversible, then Ker(E) contains a positive vector.

Proof. First we show that dim(Im(E)) = p− l. If l = 1, we can delete edges to obtain a spanning
tree (a spanning tree is an undirected subgraph that contains all vertices, and has one component
-hence it is still a connected graph-, with the additional property that if we would remove one
additional edge, the resulting graph would be disconnected). At the level of the incidence matrix
E, edge removal corresponds to column deletion, resulting in a reduced incidence matrix Er. Note
that a spanning tree has p − 1 edges, and thus Er has p − 1 columns. It is not hard to see that
these columns are linearly independent and hence Er has rank p− 1. (pf: relabel vertices so that
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vertex 1 is the root, then there is a 2nd level of vertices, a third level etc; in this case, the reduced
incidence matrix is the sum of an upper triangular matrix and a matrix having entries on the
subdiagonal only.) We claim that the original incidence matrix E has the same rank as Er (the
rank of E must obviously be at least equal to the rank of Er). Indeed, each deleted edge from the
directed graph gives rise to an undirected simple cycle when added to the spanning tree. On the
level of the matrix Er, adding this edge means that we add another column which is easily seen
to be linearly dependent on the columns of Er. Thus, the span of the columns of E is the same
as the span of Er, establishing that if l = 1, then dim(Im(E)) = dim(Im(Er)) = p− 1. A similar
argument shows the result for l > 1. Since E is a p by r matrix the dimension of Ker(E) must
equal r − dim(Im(E)) = r − (p− l) (see Appendix), establishing the first part of the lemma.

For the second part, we first assume that the directed graph is strongly connected. We will
use a result from graph theory (proved in the Appendix), which states that if a directed graph
is strongly connected, then it has a directed cycle that contains all edges. Define the vector d as
follows. For all i = 1, . . . , r we let

di = number of times the ith directed edge occurs in the directed cycle.

Then d is clearly a non-negative vector. In fact, it is a positive vector since each edge appears at
least once in the directed cycle. We claim that

Ed = 0.

This is true if (Ed)j = 0 for all j = 1, . . . , p. But each (Ed)j is equal to the difference of the
number of incoming edges into vertex j and the number of outgoing edges of vertex j that appear
in the directed cycle. This difference must be zero. Indeed, assume wlog that the directed cycle
start at vertex j (if not, then we shift the alternating sequence characterizing the directed cycle
so that vertex j becomes the first vertex). Then for every outgoing edge from vertex j, there is a
subsequent incoming edge to vertex j in the directed cycle. This establishes the claim in case the
graph is strongly connected. If the graph is only weakly reversible, then we can relabel the vertices
and edges such that the incidence matrix has the following block structure:

E =


E1 0 . . . 0
0 E2 . . . 0
...

. . .
...

...
0 0 . . . El

 , (3)

where l > 1 is the number of strong components (which equals the number of components because
the directed graph is weakly reversible), and each Ej is the incidence matrix correpsonding to a
strongly connected component of the graph. By the previous paragraph we have that there exists
for each j, a positive vector dj such that Ejdj = 0. Define the vector d by stacking the vectors
d1, d2, . . . , ds into a single positive column vector. Then clearly Ed = 0, which concludes the proof.

Definition 1. A CRN is complex balanced if there is some vector d > 0 such that

Ed = 0.

Remark 1. This definition requires that there is a positive vector (it is a rate vector, and as such,
it can be thought of as a vector of flows), such that the net flow into each complex of the CRN is
zero. This is nothing more than a stronger version of Kirchoff’s current law. It is stronger since
the vector d is required to be positive here, whereas in electrical circuit theory, the vector d could
take any value in Rn.

The main result is the following.

Theorem 1. A CRN is complex balanced iff it is weakly reversible.

Proof. If. This is immediate from Lemma 1.
Only if. We will show that if the CRN is not weakly reversible, then there is a vector v such

that:
ET v ≥ 0 but 6= 0. (4)
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From this it is clear that there cannot be a positive vector d such that Ed = 0 (for vTEd > 0 for
every positive vector d whenever (4) holds), and therefore the CRN is not complex balanced.

Let us determine the vector v. If the CRN is not weakly reversible, then the complex graph has
a component which is not strongly connected. Wlog we assume that there is just one component.
Then we can relabel the vertices of the complex graph in such a way that the incidence matrix
takes the following form:

E =
(
E1 +
0 E2

)
,

where + denotes a nonzero block-matrix having non-negative entries only. In other words, the
vertices of the complex graph have been split into two groups in such a way that there are directed
edges from the second group to the first, but not from the first into the second. Since 1TE = 0 it
follows that 1TE1 = 0 and 1TE2 = −bT , where b ≥ 0 but 6= 0. Thus,

(0− 1T )E = (0 bT ),

and hence v =
(

0
−1

)
fits the bill.

3 Deficiency of a CRN

Clearly,
Ker(E) ⊂ Ker(SE), (5)

but the reverse inclusion is not necessarily true. A rough measure for the discrepancy in the size
of these vector spaces, is the following concept.

Definition 2. We define the deficiency of a CRN as

δ := dim(Ker(SE))− dim(Ker(E))

Theorem 2.
δ = 0⇔ Ker(SE) = Ker(E)

Proof. This is immediate from (5) and the definition of the deficiency.

Note that by its very definition, the deficiency is always a non-negative integer, a fact which is
not immediately clear from the following characterization of the deficiency which is often taken as
its definition.

Theorem 3.
δ = p− l − rank(Γ),

where l denotes the number of components in the complex graph.

Proof. By definition,

δ = dim(Ker(SE))− dim(Ker(E))
= dim(Ker(Γ))− dim(Ker(E))
= (r − rank(Γ))− (r − rank(E))
= rank(Γ) + rank(E)
= rank(Γ) + (p− l),

where in the last step we used the fact from Lemma 1 that rank(E) = p − l. In the third step
we used the standard fact from linear algebra (see Appendix) that if T : V → W is a linear map
between two finite-dimensional vector spaces, then dim(Ker(T )) + dim(Im(T )) = dim(V ).

The following result provides us with a necessary condition for the existence of a positive
equilibrium of a CRN that has zero deficiency.
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Theorem 4. Suppose that δ = 0.
If the CRN has a positive equilibrium, or has a positive periodic solution, then the CRN is

weakly reversible.

Proof. Let x∗ > 0 be such that SER(x∗) = 0. Since δ = 0, Theorem 2 implies that ER(x∗) = 0.
Since x∗ > 0 we have that R(x∗) > 0, and thus the CRN is complex balanced. The conclusion now
follows from Theorem 1.

Let x(t) = x(t + T ) be a positive T -periodic solution for some T > 0. Then also R(x(t)) > 0
for all t. Hence Rave := 1/T

∫ T
0
R(x(s))ds > 0 as well. Integrating (1) from 0 to T and dividing

by T yields
SERave = 0,

and thus again by Theorem 2 and the assumption that δ = 0, that

ERave = 0,

implying that that CRN is complex balanced. The conclusion follows again from Theorem 1.

Remark 2. The reaction vector R(x) at such an equilibrium x contains the equilibrium rates (or
”flows”) of all the reactions in the CRN. The equilibrium flows must thus satisfy Kirchoff’s laws,
and this explains the terminology of calling the CRN complex balanced.

Remark 3. If δ > 0, then the conclusion of Theorem 4 does not necessarily hold: At a positive
steady state x (where SER(x) = 0), it is not necessarily the case that ER(x) = 0, and thus the
rates of the various equilibrium rates (or flows) do not necessarily balance at each complex. In
other words, although the CRN could be at equilibrium at the level of the species concentrations
(i.e. the concentrations do not change in time), Kirchoff’s laws for the flows might be violated at
a positive steady state of a CRN with positive deficiency.

Remark 4. One of the surprising aspects of the Zero Deficiency Theorem is that the reverse
implication in Theorem 4 holds as well, provided that the reaction rates obey the law of mass
action. We will see this in the next section.

We conclude this section with the following property of the deficiency, which will play a role
later on.

Lemma 2.
δ = dim (Ker(S) ∩ Im(E))

Proof. Consider the linear map S|Im(E). By a basic linear algebra fact (Appendix):

dim (Im(E)) = dim
(
Ker(S|Im(E))

)
+ dim

(
Im(S|Im(E))

)
,

which is equivalent to:

p− l = dim (Ker(S) ∩ Im(E)) + dim (Im(SE)) .

Since SE = Γ, the conclusion follows from Theorem 3.

4 Mass action kinetics

We say that a CRN has mass action kinetics, if the reaction rate vector R(x) has a particular form:

Ri(x) = kix
Sl , i = 1, . . . , r,

where the lth complex is the reactant complex of reaction i, and Sl is the lth column of matrix
S, and ki is a positive constant called the rate constant of reaction i. Thus, the rate of every
reaction depends only on the concentrations of the species appearing in the corresponding reaction
complex.

For the special case of a CRN with mass action kinetics, we will obtain a third representation
for the ODE that describes the evolution of the concentrations. First, we factor R(x) as follows:

R(x) = KΨ(x),
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where K is a r × p matrix:

Kij =

{
ki, if complex j is the reactant complex of reaction i, i = 1, . . . , r, j = 1, . . . , p,
0, otherwise

Thus each column of K corresponds to a complex, and it contains the reaction rates of those
reactions that have that complex as their reaction complex (and zeros everywhere else). The
vector Ψ(x) is a p vector whose components are monomials, defined as follows:

Ψi(x) =
n∏
j=1

x
Sji
j , i = 1, . . . , p.

Consequently, for a CRN with mass action kinetics, we find that (1) can be rewritten as:

ẋ = SAkΨ(x), (6)

where
Ak := EK

is a p × p matrix. This matrix has non-negative off-diagonal entries and non-positive diagonal
entries. If i 6= j, then

(Ak)ij =
∑
l

EilKlj =

{
0 if there is no reaction from complex j to complex i
kl∗ if the l∗th reaction goes from complex j to complex i

and
(Ak)ii =

∑
l

EilKli = −
∑
l

Kli = −
∑
l

kl,

where the last sum runs over all indices l having the property that the lth reaction has the ith
complex as its reaction complex (this set of indices could be empty, in which case the sum is zero).

4.1 Existence of a positive steady state

We are trying to find a positive x such that SER(x) = 0. Since we are assuming that the deficiency
is zero, this is equivalent with solving ER(x) = 0 for a positive x by Theorem 2. Clearly, as R(x)
is positive for positive x, a necessary condition for solvability of the latter problem, is that the
CRN is complex balanced, and thus weakly reversible by Theorem 4, a condition which we assume
henceforth.

Since the CRN has mass action kinetics, we are thus trying to solve SAkΨ(x) = 0 for a positive
x. One can show that the zero deficiency condition (ie Ker(SE) = Ker(E)) is equivalent with
saying that Ker(SAk) = Ker(Ak). (pf:clearly Ker(Ak) ⊂ Ker(SAk); if the inclusion would be a
proper inclusion, then there exists z with SAkz = 0 such that Akz 6= 0. Set y = Kz, then there is y
with SEy = 0 but Ey 6= 0, contradicting zero deficiency) Thus we only need to solve AkΨ(x) = 0.

Now comes the amazing fire power of the Perron-Frobenius Theorem! Up to a permutation of
the complexes, the matrix Ak can be put in block-diagonal form:

Ak =


(Ak)1 0 0 . . . 0

0 (Ak)2 0 . . . 0
...

...
. . .

... 0
0 0 . . . . . . (Ak)l

 (7)

where each (Ak)j is an irreducible matrix having non-negative off-diagonal entries. Moreover
1T (Ak)j = 0 for all j, and therefore the principal eigenvalue of each (Ak)j (which is simple by the
P-F Thm) is zero. Thus there exist positive vectors dj with (Ak)jdj = 0, and these are the only
eigenvectors having non-negative entries (up to multiplication by positive scalars of course).

Solving AkΨ(x) = 0 for some positive x is therefore equivalent with finding a positive x such
that:

Ψ(x) =
l∑
i=1

λid
e
i , for positive λi, i = 1, . . . , l,
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where the dei are p vectors having entry equal to di in the ith block, and zeros elsewhere. Taking
logarithms entrywise this is equivalent to solving:

ST ln(x) = ln(
l∑
i=1

λid
e
i )

for positive λi, i = 1, . . . , l. Setting λi = ezi for suitable real zi, and letting si be the non-negative
vector obtained from dei by replacing positive entries by 1, and zeros by 0 (thus si can be viewed
as the support vector corresponding to dei ), this is equivalent to solving:

ST ln(x) =
l∑
i=1

zisi + ln(
l∑
i=1

dei ) (8)

for some zi, i = 1, . . . , l.
The following result (it is a pure linear algebra statement!) is crucial.

Lemma 3. Let a weakly reversible CRN have deficiency δ. Then

dim
(
Im(ST ) + span{si}

)
= p− δ

Proof. We have from Lemma 2 that

dim (Ker(S) ∩ Im(E)) = δ

and thus

p− δ = dim
(
[Ker(S) ∩ Im(E)]⊥

)
= dim

(
[Ker(S)]⊥ + [Im(E)]⊥

)
= dim

(
Im(ST ) + span{si}

)
That [Im(E)]⊥ = span{si} follows from the fact that each si is clearly contained in [Im(E)]⊥ =
Ker(ET ) (recall that for a weakly reversible CRN, E takes the form (3) and 1TEi = 0 for all
i = 1, . . . , l, so that sTi E = 0 for all i = 1, . . . , l), and since [Im(E)]⊥ and span{si} have the same
dimension l (for the former, use Lemma 1 and the fact that Im(E) ⊕ [Im(E)]⊥ = R

p; the latter
should be clear from the definition of the si in the discussion prior to the Lemma).

Combining (8) and Lemma 3 we have just proved the main result of this subsection.

Theorem 5. Let the CRN have mass action kinetics, be weakly reversible and have zero deficiency.
Then it has a positive steady state x∗ with

ER(x∗) = AkΨ(x∗) = 0

4.2 Characterization of all positive steady states

Let E+ be the set of positive steady states of a CRN with mass action kinetics:

E+ = {x ∈ int(Rn+)|SAkΨ(x) = 0}.

Under the assumptions of Theorem 5, we know that E+ 6= ∅. In fact, x∗ ∈ E+.
We also define the following set, parametrized by a parameter in the vector space [Im(Γ)]⊥:

Ẽ := {x | x = x∗ eµ, µ ∈ [Im(Γ)]⊥}. (9)

We will prove the following characterization for E+:

Theorem 6. Under the conditions of Theorem 5,

E+ = Ẽ.
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To prove this result, we shall need the following auxiliary result.

Lemma 4. Let a CRN have l components (not necessarily strong components). Then if µ ∈
[Im(Γ)]⊥, and if the ith and jth complex belong to the same component, then:

< µ, Si >=< µ, Sj >,

where Si denotes the ith column of the matrix S.

Proof. Since µ ∈ [Im(Γ)]⊥, it follows that:

µTΓ = µTSE = 0.

Recall that every column of E corresponds to a reaction in the CRN and that it has precisely two
nonzero entries. One of these is −1 and the other is +1, and they occur in position k, respectively
l, when the reaction transforms complex k into complex l. Also notice that the column of the
matrix SE which corresponds to this reaction contains the difference of the stoichiometry vectors
Sk − Sl. By assumption, the ith and jth complex belong to the same component, and thus there
is a sequence of complexes Ci, Cr1 , Cr2 , . . . , Crq , Cj in which every pair of consecutive complexes
is linked by some reaction (the direction of the reaction is irrelevant). Since µTSE = 0, it follows
that:

µT (Si − Sr1) = µT (Sr1 − Sr2) = · · · = µT (Srq − Sj) = 0.

Adding these expressions yields:
µT (Si − Sj) = 0,

which completes the proof.

Proof. (Proof of Theorem 6). First we show that Ẽ ⊂ E+. Let µ ∈ [Im(Γ)]⊥, and consider
x = x∗ eµ. We must show that AkΨ(x) = 0. Wlog we assume that Ak has the block diagonal form
(7), where each block corresponds to a strong component of the CRN, and that Ψ(x) is partitioned
correspondingly:

Ψ(x) =


(Ψ(x))1

(Ψ(x))2
...

(Ψ(x))l


It suffices to show that each vector (Ak)i (Ψ(x))i = 0 for i = 1, . . . , l. Pick the ith component of
the CRN and assume that it has q complexes Ci1 , . . . , Ciq . Then:

(Ψ(x))i = (Ψ(x∗ eµ))i

=
(

(x∗ eµ)Si1 , (x∗ eµ)Si2 , . . . , (x∗ eµ)Siq
)T

=
(

(x∗)Si1 e<µ,Si1>, (x∗)Si2 e<µ,Si2>, . . . , (x∗)Siq e<µ,Siq>
)T

= e<µ,Si1> (Ψ(x∗))i

where we used the fact that < µ, Si1 >=< µ, Si2 >= · · · =< µ, Siq > by Lemma 4. This implies
that (Ak)i (Ψ(x))i = e<µ,Si1>(Ak)i (Ψ(x∗))i = 0, because x∗ ∈ E+. This concludes the proof of
the first part.

Next we show that E+ ⊂ Ẽ. This will be proved later in Section 4.4.

4.3 Uniqueness of positive steady states in each positive stoichiometry
class

Theorem 7. Let the conditions of Theorem 5 hold, and let P be an arbitrary positive stoichiometry
class:

P = {z ∈ Rn+|z = p+ Im(Γ)|}

for some p ∈ int(Rn+). Then P ∩ E+ is a singleton.
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Proof. Step 1. E+ intersects each positive stoichiometry class. A result from convex analysis is
used for this proof, see Appendix.

We need to show that P ∩ E+ 6= ∅, i.e.:

∃µ ∈ [Im(Γ)]⊥ : x∗ eµ−p ∈ Im(Γ)

The idea of the proof is to construct a continuous function on a compact subset of [Im(Γ)]⊥,
and to show that the function achieves a minimum at the sought-after point µ.

Consider the function g : Rn → R, defined as follows:

g(x) :=< x∗, ex > − < p, x > .

Then its derivative is
Dg(x) = x∗ ex−p,

and its Hessian is
H(x) = diag(x∗ ex),

a positive definite matrix for all x ∈ Rn, which implies that the function g is convex.
Note that g is radially unbounded, that is, for all x 6= 0,

lim
a→+∞

g(ax) = +∞. (10)

Now consider gr, the restriction of g to [Im(Γ)]⊥. Then gr is continuous, convex and radially
unbounded as well. Consider the following set

C = {x ∈ [Im(Γ)]⊥ | gr(x) ≤ gr(0)}.

Then C is closed, contains x = 0, and is convex (pf: if x, y ∈ C, then for λ ∈ [0, 1], we have that
gr(λx+ (1− λ)y) ≤ λgr(x) + (1− λ)gr(y) ≤ gr(0)). We claim that in fact, C is compact. Indeed,
if C were unbounded, then by the result in the Appendix it would contain a half-ray through the
origin. Since gr is radially unbounded, this implies that gr takes arbitrary large values in C, which
contradicts that gr is bounded by gr(0) for all points in C.

Thus, gr achieves a minimum on the set C, and we assume it is achieved at x = µ. By the
definition of C we have in fact that gr achieves its minimum on [Im(Γ)]⊥ at x = µ. It follows that
the gradient of gr, evaluated at x = µ, is zero. As a consequence, the gradient of g, evaluated at
x = µ is perpendicular to [Im(Γ)]⊥, and hence belongs to Im(Γ). More precisely,

Dg(µ) = x∗ eµ−p ∈ Im(Γ),

which concludes the proof of the first step.
Step 2. The intersection of E+ with each positive stoichiometry class is unique.
Suppose not, then there is a stoichiometry class containing positive and distinct x1 and x2 with

x2 − x1 = Γy, for some y, and x1 = x∗ eµ1 , x2 = x∗ eµ2 , for some µ1 6= µ2 ∈ [Im(Γ)]⊥ .

Then since also µ2 − µ1 ∈ [Im(Γ)]⊥,

0 =< Γy, µ2 − µ1 >=< x2 − x1, µ2 − µ1 >=< x∗(eµ2 − eµ1), µ2 − µ1 > .

The last expression is positive because x∗ is positive, µ1 6= µ2, and the exponential is a strictly
increasing function. We have reached a contradiction.

4.4 Local asymptotic stability of each positive steady state within its
corresponding stoichiometry class

We will show

Theorem 8. Assume that the conditions of Theorem 7 hold, and let P ∩ E+ = {x∗} so that x∗

is the unique positive equilibrium in the positive stoichiometry class P . Then x∗ is a locally stable
equilibrium of (6). Moreover, x∗ is locally asymptotically stable with respect to initial conditions
in P ∩ int(Rn+).
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Proof. We will establish the existence of the following Lyapunov function on int(Rn+):

V (x) =
n∑
i=1

∫ xi

x∗i

ln
(
yi
x∗i

)
dyi,

where x∗. Note for future reference that V is continuously differentiable in int(Rn+), and positive
definite with respect to x∗ (i.e. V (x) ≥ 0 and = 0 iff x = x∗), and that

∇V (x) = ln
( x
x∗

)
.

We claim that V̇ (x) ≤ 0 in int(Rn+), and = 0 iff x is a steady state of the CRN. Indeed, along
solutions of (1) (or equivalently (2)) with mass action kinetics, there holds that:

V̇ = < ẋ, ln
( x
x∗

)
>

= < ΓR(x), ln
( x
x∗

)
>

=
r∑
l=1

< ΓlRl(x), ln
( x
x∗

)
>

where Γl denotes the lth column of the matrix Γ. Assuming that the lth reaction has a reaction
and product complex whose stoichiometric vector equals αl and βl respectively, it follows that:

V̇ =
r∑
l=1

klx
αl < Γl, ln

( x
x∗

)
>

=
r∑
l=1

kl(x∗)αl e<αl,ln( x
x∗ )> < Γl, ln

( x
x∗

)
> .

The reason for rewriting the function Sαl using the exponential functions explicitely, will soon
become clear. Then

V̇ =
r∑
l=1

kl(x∗)αl e<αl,ln( x
x∗ )>

(
< βl, ln

( x
x∗

)
> − < αl, ln

( x
x∗

)
>
)

Now comes the first key step: By strict convexity of the exponential function, it follows that

V̇ ≤
r∑
l=1

kl(x∗)αl
(

e<βl,ln( x
x∗ )>− e<αl,ln( x

x∗ )>
)
,

and equality holds if and only if

< βl, ln
( x
x∗

)
>=< αl, ln

( x
x∗

)
>, ∀l = 1, . . . , r (11)

We will investigate later what it means for a vector x to satisfy these r equations. For now, we
continue the calculation of V̇ :

V̇ ≤
r∑
l=1

kl(x∗)αl
(

e<βl,ln( x
x∗ )>− e<αl,ln( x

x∗ )>
)

Now comes the second key step. Denoting the ith standard basis vector of Rp by ei, the latter
expression can be rewritten as:

V̇ ≤
r∑
l=1

kl(x∗)αl < El,

p∑
i=1

e<Si,ln( x
x∗ )> ei >,

10



where El denotes the lth column of the incidence matrix E, and Si is the ith column of the matrix
S. Note that this can be rewritten more compactly as:

V̇ ≤< ER(x∗),
p∑
i=1

e<Si,ln( x
x∗ )> ei > .

Since ER(x∗) = 0 (because by assumption x∗ is a positive equilibrium, that is SER(x∗) = 0, the
CRN has deficiency zero, which implies that in fact ER(x∗) = 0), it follows that

V̇ ≤ 0.

Let us now investigate for which states x there holds that V̇ (x) = 0. As we have seen this
happens if and only if (11) is satisfied. This set of equations can be rewritten more compactly as
follows:

ln
( x
x∗

)
∈ [Im(Γ)]⊥,

or equivalently if x ∈ Ẽ, where the set Ẽ was defined in (9). On the other hand, we know that
x ∈ E+ implies that V̇ (x) = 0 (since by definition V̇ (x) =< ΓR(x),∇V (x) >), and thus by the
above that x ∈ Ẽ. In other words, we have shown that E+ ⊂ Ẽ, which provides the proof of the
second part of Theorem 6.

Summarizing, we have shown that for all x ∈ int(Rn+) holds that V̇ (x) ≤ 0, and that V̇ (x) = 0
if and only if x ∈ Ẽ = E+.

From Lyapunov’s stability theorem follows at once that x∗ is a stable equilibrium. In fact, a
stronger conclusion is possible. If we restrict initial conditions to those positive initial conditions
in the positive stoichiometry class P that contains x∗, it follows that V̇ (x) < 0, unless x = x∗,
since x∗ is the unique equilibrium in this set. And thus Lyapunov’s stability theorem implies that
x∗ is locally asymptotically stable with respect to initial conditions in P ∩ int(Rn+).

Remark 5. Recent work on CRN’s has focused on the notion of persistence. We say that a CRN
is persistent if (1) has the property that

ω(x) ∩ bd(Rn+) = ∅, for all x ∈ int(Rn+),

where ω(x) denotes the omega limit set of x.
If we assume that the CRN is persistent (and bearing in mind that both necessary and sufficient

conditions for persistence have been obtained in the literature), then the conclusion of Theorem 8
can be strengthened substantially :

Theorem 9. Let the assumptions of Theorem 8 hold, and assume that the CRN is persistent. Then
x∗ is globally asumptotically stable with respect to all initial conditions in P ∩ int(Rn+).

Proof. For x ∈ P ∩ int(Rn+), the corresponding omega limit set is contained in P ∩ int(Rn+) because
the CRN is persistent. But since V̇ (y) ≤ 0 for all y ∈ P ∩ int(Rn+) and V̇ (y) = 0 iff y = x∗, it
follows from Lasalle’s invariance principle that ω(x) = {x∗}.

Appendix

A Facts from linear algebra

Let V and W be subspaces of a Euclidean space Rn. Then

(V ∩W )⊥ = V ⊥ +W⊥.

Let L : X → Y be a linear mapping, where X and Y are subspaces of certain Euclidean spaces.
Then

dim(X) = dim(Ker(L)) + dim(Im(L)),

and
[Ker(L)]⊥ = Im(LT ), and [Im(L)]⊥ = Ker(LT ),

where LT is the adjoint of L.

11



B Facts from graph theory

Lemma 5. If G is a strongly connected directed graph, then it has a directed cycle (not necessarily
simple) containing all edges of the graph.

Proof. The proof provides an algorithm for the construction of the directed cycle. It will consist
of the concatenation of several directed cycles and directed paths.

Wlog we assume that G has more than 1 vertex (otherwise there is nothing to prove).
We start with vertex 1, and consider the set of outgoing directed edges leaving this vertex

E1 = {e1
1, . . . , e

1
k}, and the corresponding set of target vertices T 1 = {v1

1 , . . . , v
1
k}. For every

i = 1, . . . , k, we can construct directed cycles starting at vertex 1, passing via edge e1
i to vertex v1

i ,
and returning to vertex 1 via some directed path (which exists because G is strongly connected).
These k directed cycles are then concatenated into one large directed cycle.

From vertex 1 we pick a directed path to vertex 2. The previous large directed cycle can be
connected with this directed path, to form a part of the sought after directed cycle. Now we repeat
the construction performed at vertex 1, but at vertex 2: We consider the set of outoing directed
edges E2 leaving vertex 2, and the corresponding set of target vertices T 2, and we construct directed
cycles starting and ending at vertex 2 which are all concatenated into a second large directed cycle
which is concatenated with the previously described part of the sought after directed cycle.

This procedure can be continued until we reach vertex n. The final part of the directed cycle
will be some directed path from vertex n to vertex 1, which leads to the sought after directed cycle.
Clearly, it contains all edges of the graph. Indeed, by construction it contains all outgoing edges
of the graph, and every edge of the graph is an outgoing edge leaving some vertex.

C The Perron-Frobenius Theorem

D A result from convex analysis

Theorem 10. Let C be a closed convex set in Rn and 0 ∈ C. If C is unbounded, then it contains
a half ray through the origin, ie. there is some y∗ ∈ C with y∗ 6= 0, such that Ry∗ := {ay∗ | a ≥
0} ⊂ C.

Proof. Let xn ∈ C be a sequence with |xn| → +∞ as n → +∞. Since 0 ∈ C, it follows by
convexity of C that every segment [0, xn] is also in C. For all sufficiently large n, this implies
that yn := xn/|xn| ∈ C as well. Since yn belongs to the unit sphere in Rn, the sequence yn has
a converging subsequence with limit y∗ 6= 0, and since C is closed, it follows that y∗ ∈ C. We
claim that Ry∗ is contained in C. If not, there would be some ỹ ∈ Ry∗ with ỹ /∈ C. Since C is
closed, there is an open ball Bỹ of radius ε > 0, containing ỹ, and such that Bỹ is contained in the
complement of C. We return to the converging subsequence yn in the unit sphere, and consider the
corresponding sequence xn. It follows that for all sufficiently large n, the segments [0, xn] intersect
the ball Bỹ. Since these segments [0, xn] are contained in C, this implies that Bỹ and C intersect,
a contradiction.

E Lyapunov’s stability theorem and Lasalle’s invariance prin-
ciple
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