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The bacteriaPseudomonas aeruginosause the size and density of their colonies to
regulate the production of a large variety of substances, including toxins. This phe-
nomenon, called quorum sensing, apparently enables colonies to grow to sufficient
size undetected by the immune system of the host organism.
In this paper, we present a mathematical model of quorum sensing inP. aeruginosa
that is based on the known biochemistry of regulation of the autoinducer that is cru-
cial to this signalling mechanism. Using this model we show that quorum sensing
works because of a biochemical switch between two stable steady solutions, one
with low levels of autoinducer and one with high levels of autoinducer.

c© 2001 Society for Mathematical Biology

1. INTRODUCTION

The bacteriumPseudomonas aeruginosais an increasingly prevalent human
pathogen, responsible for 12% of hospital-acquired urinary tract infections, 10%
of blood stream infections, and 8% of surgical wound infections. It is also one of
the most common and lethal pathogens responsible for ventilator-associated pneu-
monia in intubated patients, with directly attributable deaths reaching 38%. Cystic
fibrosis patients are characteristically susceptible to chronic infection byP. aerug-
inosa, which is responsible for high rates of illness and death in this population
(Van Delden and Iglewski, 1998).

The ability ofP. aeruginosato invade a potential host relies largely on its ability
to control many of its virulence factors by a mechanism that monitors cell density
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and allows communication between bacteria. That is, isolated production of extra-
cellular virulence factors by a small number of bacteria would probably lead to an
efficient host response neutralizing these factors. However, the typical behavior is
for virulence factors to be expressed by an entire colony only after the colony has
achieved a certain size or density. In this way, cells excrete extracellular virulence
factors only when they can be produced at high enough levels to overcome host
defenses.

Another feature of persistentP. aeruginosainfections in cystic fibrosis patients is
that when cell densities are high enough, the population as a whole begins to pro-
duce copious amounts of exopolysaccharide alginate (Govan and Deretic, 1996).
It is thought that these bacteria grow inside a biofilm [defined as micro-colonies
surrounded by an exopolysaccharide, seeCharacklis and Marshall (1990)] as a
survival strategy since the surrounding polymer matrix protects bacteria.P. aerug-
inosagrowing in an alginate ‘slime matrix’ are resistant to antibiotics and disin-
fectants (Govan and Deretic, 1996).

Recently, a cell-to-cell signaling system has been shown to be involved in the
differentiation ofP. aeruginosabiofilms (Davieset al., 1998). A mutant defective
in the production of a certain signaling molecule formed an abnormal biofilm that
in contrast to the wild type biofilm was sensitive to low concentrations of the de-
tergent sodium dodecyl sulfate (SDS). Furthermore, the addition of the signaling
molecule to the batch culture medium restored production of a slimy biofilm that
was SDS resistant (Davieset al., 1998).

The ability of cells to sense their own cell density, to communicate with each
other and to behave as a population instead of individually is called quorum sens-
ing. Quorum sensing is known to occur in a growing number of examples, includ-
ing sporulation and fruiting body formation byMyxococcus xanthusand antibiotic
production by several species ofStreptomyces. Perhaps the best characterized ex-
ample is in the autoinduction of luminescence in the symbiotic marine bacterium
Vibrio fischeri, which colonizes the light organs of certain marine fishes and squids
(Fuquaet al., 1996).

In all of these examples the fundamental mechanism of quorum sensing is the
same, although the biochemical details are surprisingly different. These cell-to-
cell signaling systems are all composed of a small molecule, called an autoinducer,
which is synthesized by an autoinducer synthase, and a transcriptional activator
protein. The production of the autoinducer is regulated by a specific R-protein. The
R-protein by itself is not active without the corresponding autoinducer, but the R-
protein/autoinducer complex binds to specific DNA sequences upstream of the tar-
get genes, enhancing their transcription. Thus, at low cell density, the autoinducer
is synthesized at basal levels and diffuses into the surrounding medium, where it
is diluted. With increasing cell density, however, the intracellular concentration of
the autoinducer increases until it reaches a threshold concentration beyond which
it is produced autocatalytically, resulting in a dramatic increase of product concen-
trations. The autoinducer, therefore, allows the bacteria to communicate with each
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other, to sense their own density, and together with a transcriptional activator to
express specific genes as a population rather than individually.

Quorum sensing is an unusual signaling mechanism for several reasons. First,
there are no membrane surface receptors for the signaling molecule, and since the
autoinducer is produced on the interior of the cell, the extracellular concentration
of autoinducer is generally smaller than the intracellular concentration. One might
therefore question how the autoinducer can act as a signal.

The purpose of this paper is to develop and study mathematical models of quo-
rum sensing, in order to obtain a deeper understanding of how and when this mech-
anism works. We focus on the specific system ofP. aeruginosaalthough the math-
ematical principles are the same in other systems. Our emphasis here is on the
biochemical mechanism underlying quorum sensing. In a related study,Jameset
al. (2000) found a simple mathematical model appropriate toV. fischerithat had
multiple stable steady states and was controlled by extracellular autoinducer. By
contrast, inWard et al. (2000), a population dynamics approach was taken forV.
fischeri, and switching behavior in which there was cell differentiation was found
as the colony grew in size. The models in both of these studies were systems of
three first-order, nonlinear, ordinary differential equations. In what follows, we
examine models involving both ordinary and partial differential equations.

2. THE M ODEL

The quorum-sensing system ofP. aeruginosais unusual because it has two some-
what redundant regulatory systems. The first system described inP. aeruginosa
was shown to regulate expression of the elastase LasB and was therefore named
the las system. The two enzymes, LasB elastase and LasA elastase, are responsi-
ble for elastolytic activity which destroys elastin-containing human lung tissue and
causes pulmonary hemorrhages associated withP. aeruginosainfections. Thelas
system is composed oflasI, the autoinducer synthase gene responsible for synthesis
of the autoinducer 3-oxo-C12-HSL, and thelasRgene that codes for transcriptional
activator protein. The LasR/3-oxo-C12-HSL dimer, which is the activated form of
LasR, activates a variety of genes, but preferentially promoteslasI activity. The
las system is positively controlled by both GacA and Vfr, which are needed for
transcription oflasR. The transcription oflasI is also repressed by the inhibitor
RsaL.

The second quorum-sensing system inP. aeruginosais named therhl system
because of its ability to control the production of rhamnolipid. Rhamnolipid has
a detergent-like structure and is responsible for the degradation of lung surfactant
and inhibits the mucociliary transport and ciliary function of human respiratory
epithelium. This system is composed ofrhlI , the synthase gene for the autoinducer
C4-HSL, and therhlR gene encoding a transcriptional activator protein. A diagram
depicting these two systems is shown in Fig.1 (Van Delden and Iglewski, 1998).
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Figure 1. Schematic diagram showing the gene regulation for thelas andrhl systems in
P. aeruginosa.

The first step in our analysis is to find equations describing the kinetics of this
system. For simplicity, we consider only thelassystem. We introduce variables for
all the concentrations (shown in Table1). We assume that the dimerP is formed
via the law of mass action at ratekR A and degraded at ratekP,

d P

dt
= kR AR A− kP P. (1)

The enzyme LasR is used in the production ofP and naturally degrades at ratekR,
and is produced by the degradation ofP, and by lasR mRNA at ratek1,

d R

dt
= −kR AR A+ kP P − kRR+ k1r. (2)

Similarly, the autoinducer is used in the production ofP and naturally degrades at
ratekA, and is produced by the degradation ofP, and by the lasI enzyme at ratek2,

d A

dt
= −kR AR A+ kP P + k2L − kA A. (3)
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Table 1. Variables used to identify concentrations.

Variable Concentration

R LasR
A 3-oxo-C12-HSL
P LasR/3-oxo-C12-HSL
L LasI
S RsaL
r lasR mRNA
l lasI mRNA
s rsaL mRNA

The enzyme LasI is produced by lasI mRNA at ratek3 and degrades at ratekL ,

dL

dt
= k3l − kL L . (4)

The inhibitor RsaL is produced by rsaL mRNA at ratek4 and degrades at ratekS,

dS

dt
= k4s− kSS. (5)

All messenger RNAs are produced by DNA at rates that are Michaelis–Menten in
type. Thus, for example, the inhibitor rsaL mRNA is produced at a Michaelis–
Menten rate depending onP, and degrades at some natural rateks,

ds

dt
= Vs

P

Ks+ P
− kss, (6)

and similarly, lasR mRNA is produced at a Michaelis–Menten rate depending onP,
and degrades at some natural ratekr . We also assume that lasR mRNA is produced
at some basal rater0.

dr

dt
= Vr

P

Kr + P
− kr r + r0. (7)

Finally, the production of lasI mRNA is activated byP and inactivated byS, de-
grades at ratel l , and is produced at some basal ratel0,

dl

dt
= Vl

P

Kl + P

1

KS+ S
− kl l + l0. (8)

We would like to simplify this system by taking into account that some reactions
are fast compared to others. The difficulty here is that the rate constants in the
model are not known. There is evidence that many proteins are more stable than
the mRNA that code for them [see, for example,Andersonet al. (1998), Chalfieet
al. (1998) andEhrenberg and Sverredal (1995)]. If this is the case here, then LasR
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mRNA and lasI mRNA are much shorter lived than LasR and LasL, respectively,
so thatkr andkl are much larger thankL andkR. With this assumption, we takel
andr to be in quasi-steady state, so that

kl l = Vl
P

Kl + P

1

KS+ S
+ l0, kr r = Vr

P

Kr + P
+ r0. (9)

The variableL can be understood as a first-order linear filter, so thatL tracksl
with some delay. The simplest approximation to this behavior is to ignore the delay
and take

k3l = kL L . (10)

The quantityS inhibits the production ofl , but it seems not to have much effect
on quorum-sensing behavior. We ignore this variable by eliminating it from the
production term in equation (8).

With these simplifications, the governing system of equations becomes

d P

dt
= kR AR A− kP P, (11)

d R

dt
=−kR AR A+ kP P − kRR+ VR

P

KR+ P
+ R0, (12)

d A

dt
=−kR AR A+ kP P + VA

P

KL + P
+ A0− kA A, (13)

(with redefined parameters, of course). Finally, since the production ofA and R
involves transcription of mRNA, it is probably slow compared to the binding and
unbinding ofR and A to form complexP. Thus, we assume thatP is in quasi-
steady state so that

kP P = kR AR A (14)

and the governing equations become

d R

dt
=−kRR+ VR

P

KR+ P
+ R0, (15)

d A

dt
= VA

P

KL + P
+ A0− kA A, (16)

P =
kR A

kP
R A. (17)

Next, we need to determine how the density of organisms controls the activity
of this network. We assume that autoinducerA diffuses across the cell membrane,
and that the local density (volume fraction) of cells isρ. Then by assumption, the
local volume fraction of extracellular space is 1− ρ.
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The extracellular autoinducer is assumed to diffuse freely across the cell mem-
brane, with conductanceδ, and naturally degrades at ratekE. If we suppose that
the density of cells is uniform and the extracellular space is well mixed, then the
concentration of autoinducer in the extracellular space, denotedE, is governed by
the equation

(1− ρ)

(
d E

dt
+ kE E

)
= δ(A− E). (18)

Here the factor 1− ρ must be included to scale for the difference between concen-
tration in the extracellular space and concentration viewed as amount per unit total
volume. Similarly, the governing equation for intracellular autoinducerA must be
modified to account for diffusion across the cell membrane, yielding

ρ

(
d A

dt
− VA

P

KL + P
− A0+ kA A

)
= −δ(A− E). (19)

There is some evidence that the transport of the autoinducer may involve both
passive diffusion and a cotransport mechanism (Pearsonet al., 1999). For this
model we assume that diffusion alone acts to transport the autoinducer [as is ap-
parently correct for therhl system (Pearsonet al., 1999)]. The inclusion here of an
additional cotransport mechanism is possible but seems not to be a crucial ingredi-
ent.

It is now fairly easy to see that this system of equations exhibits quorum sensing.
One way to see this is to takeE to be in quasi-steady state. This is probably not
a good assumption sinceA andE are the same chemical and so probably degrade
at about the same rates inside and outside the cell. However, this assumption al-
lows us to study this system in the phase plane. The behavior is not changed if
a three-variable system is used, but the analysis of the three-variable systems is
substantially more complicated with little increase in insight.

The resulting system is (with redefined parameters)

d R

dt
= VR

P

KR+ P
− kRR+ R0, (20)

d A

dt
= VA

P

K A + P
+ A0− d(ρ)A, (21)

whereP = kR AR A
kP

andd(ρ) = kA +
δ
ρ

( kE(1−ρ)
δ+kE(1−ρ)

)
.

Quorum sensing works because of theρ dependence ofd(ρ). In particular, when
ρ is small,d(ρ), the decay rate forA, is large, while whenρ is close to one,d(ρ)
is small. This has the feature of modifying theA nullcline in an important way.
The nullclines for the system (20), (21) are shown in Fig.2. Here it is readily seen
that for small values ofρ and for large values ofρ there is a unique steady-state
solution in the positiveR–A quadrant. For small values ofρ the steady-state values
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Figure 2. Nullclinesd R
dt = −kRR+ VRR A

KR+R A+R0 = 0 andd A
dt =

VAR A
K A+R A+A0−d(ρ)A =

0 with three different values ofρ, shown for parameter valuesVR = 2.0, VA = 2.0,
KR = 1.0, K A = 1.0, R0 = 0.05, A0 = 0.05, δ = 0.2, kE = 0.1, kR = 0.7, and
kA = 0.02.

of R and A are small, while for large values ofρ the steady state-values ofR and
A are large.

For intermediate values ofρ, there are three steady solutions in the positive quad-
rant. The small and large values are stable steady solutions while the intermediate
solution is unstable, a saddle point.

The parameterρ provides a switch between the two stable steady solutions. For
small values ofρ, there is a unique stable steady state with small values ofR and
A. Asρ increases, two more solutions appear (a saddle node bifurcation), and asρ

increases yet further, the small solution disappears (another saddle node) leaving a
unique solution, thus initiating a ‘switch’.

It is easy to arrange parameter values that have this switching behavior, and the
switch can be adjusted to occur at any desired density level.

An even simpler model that has the same qualitative behavior (but is not correct
from a biochemical perspective) is found by settingR= A to obtain

d A

dt
= VA

A2

K A + A2
+ A0− d(ρ)A. (22)
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Figure 3. Plot ofd A
dt =

VA A2

K A+A2 + A0 − d(ρ)A as a function ofA for several values of
ρ with parameter valuesVA = 1.0, K A = 1.0, A0 = 0.05, δ = 0.5, kE = 0.1, and
kA = 0.02.

Here, the curved A
dt , shown in Fig.3, is a monotone increasing function ofρ and

for small and large values ofρ there is a unique positive steady-state solution. For
small values ofρ the steady-state value ofA is small, while for large values ofρ
the steady-state value ofA is large.

For intermediate values ofρ, the curved A
dt is ‘n-shaped’ and there are three steady

positive solutions. The small and large values are stable steady solutions while the
intermediate solution is unstable.

The switching behavior is readily observed by varyingρ. For small values ofρ,
there is a unique stable steady state with a small value ofA. As ρ increases, two
more solutions appear, and asρ increases yet further, the small solution disappears
leaving a unique solution, thus initiating a ‘switch’.

We can now give a verbal explanation of how quorum sensing works. The quan-
tity A, the autoinducer, is produced by cells at some nominal rate. However, the
cell must dump its production ofA or else the autocatalytic reaction would turn on.
As the density of cells increases, the dumping process becomes less effective, and
so the autocatalytic reaction is turned on. In other words, quorum sensing takes
place because the ‘drain’ forA backs up. Note that the external concentration of
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A is always smaller than the internal concentration ofA. Thus,A is not actually a
signaling chemical, and there is no necessity for surface receptors forA, and there
is no need to develop high concentrations of autoinducer in the extracellular space.

3. A PDE MODEL

While the above model shows the desired behavior in a homogeneous environ-
ment, such as a chemostat, a more realistic model would take into account the
possibility of inhomogeneous distributions of the autoinducer in the extracellular
space, while the cells themselves remain relatively motionless.

We suppose there is a uniform layer of cells of thicknessL and fixed volume
fractionρ which are attached to a substratum in an aqueous bath. As above, the
cells produce the autoinducer with concentrationA which has extracellular con-
centrationE,

d A

dt
= F(A)+

δ

ρ
(E − A), (23)

∂E

∂t
=
∂2E

∂x2
+

δ

1− ρ
(A− E)− kE E. (24)

The factorρ in equation (23) and the factor 1− ρ in (24) are necessary to account
for the differences in volume fraction between intracellular and extracellular space.
We assume that the cells occupy the one-dimensional region 0< x < L. At the
boundary of the cellular domain,x = L, we assume that there is mass transfer into
the bulk fluid. We model this simply by assuming the Robin boundary condition

Ex(L , t)+ αE(L , t) = 0 (25)

whereα is a positive parameter. At the substratum we impose the Neumann bound-
ary condition

Ex(0, t) = 0. (26)

The goal of this section is to find the steady-state solutions of this pde, i.e.,

Exx +
δ

1− ρ
(A− E)− kE E = 0, with F(A)+

δ

ρ
(E − A) = 0 (27)

on 0< x < L with Ex(0) = 0 andEx(L)+ αE(L) = 0.
The analysis of this equation is accomplished in the phase plane. First, we must

determine the nature of the solutions of the equation

F(A)+
δ

ρ
(E − A) = 0. (28)
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Figure 4. Plot of the functionE(A) = A− ρ
δ F(A) for K A = 1.0, VA = 1.0, A0 = 0.05,

δ = 0.1, ρ = 0.3, andkA = 0.2.
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We begin by stating general assumptions for the functionF(A), namely that it is
‘n-shaped’ and strictly positive on the interval 0≤ A < A∗, and thatF(A∗) = 0.
A specific example of the functionF(A) is

F(A) =
VA A2

K A + A2
− kA A+ A0. (29)

This function is ‘n-shaped’ ifkA <
3VA

8

√
3

K A
and has only one zero ifA0 is suffi-

ciently large.
It is easy to determineE as a function ofA from (28) (shown in Fig.4). We

further assume thatρ
δ

is sufficiently large so that the functionE(A) = A− ρ

δ
F(A) is

an ‘n-shaped’ function. For the function (29), this occurs wheneverδ
ρ
< 3VA

8

√
3

K A
−

kA. SinceE(A) = A− ρ

δ
F(A) is ‘n-shaped’, there are valuesAmx and Amn, with
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Figure 6. Phase portrait of the solution of the boundary value problem on the upper branch
g+(E), with parameter valuesK A = 1.0, VA = 1.0, A0 = 0.05, δ = 0.1, ρ = 0.3,
kA = 0.2, andkE = α2

= 0.1. Dashed lines are the curves on whichEx = −αE and
Ex = 0.

Amx < Amn < A0, which are local maximum and local minimum, respectively, for
the functionE(A), and thatEmx = E(Amx). The valueEmn = E(Amn) may be
positive or negative, however, it is required thatEmn < Emx.

Now we invert the functionE(A) by reversing the axes, and note that the inverse
function has three branches, a lower, middle and upper branch. For each of these
we find the quantity

g(E) =
δ

1− ρ
(A−1(E)− E)− kE E, (30)

where

A−1(E)−
ρ

δ
F(A−1(E)) = E. (31)

Of necessity,g(E) has three branches, which we denote asg−(E), g0(E), and
g+(E), shown in Fig.5. These are defined on the three subintervals 0≤ E ≤ Emx

(for g−(E)), Emn < E < Emx (for g0(E)), andEmx < E < E0 (for g+(E)), and
g+(E0) = 0. Where they are comparable,g−(E) < g0(E) < g+(E).

The final restriction placed on the parameters is that we requirekE to be small
enough so thatg−(E) > 0 on the interval 0≤ E ≤ Emx.
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Figure 7. Steady solution branches withE(0) plotted as a function ofL shown for pa-
rameter valuesK A = 1.0, VA = 1.0, A0 = 0.05, δ = 0.1, ρ = 0.3, kA = 0.2, and
kE = α

2
= 0.1.

Now we look for solutions of the ordinary differential equation

Exx + g(E) = 0 (32)

on the interval 0< x < L and subject to boundary conditionsEx(0) = 0 and
Ex(L) = −αE(L) whereα > 0. The easiest way to demonstrate the existence of
such solutions is in theE − Ex phase plane, depicted in Fig.6. In this plane, the
boundary conditions are depicted as two straight linesEx = 0 andEx = −αE. In
Fig. 6, trajectories are shown for the functiong+(E) although the trajectories for
g−(E) are qualitatively identical.

We use the functiong−(E) to construct the first solution branch. In fact, for any
E− with E− < Emx, the trajectories withE ≤ E− and

1

2
E2

x −

∫ E−

E
g−(E)d E = 0 (33)

work. It follows that for eachE− with 0 < E− < Emx there is a corresponding
value of L, sayL = L−(E−), for which this solution exists. Furthermore, since
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Figure 8. Steady solution profilesE(x) plotted as a function ofx on the interval 0< x <
L = 1.0 for which E(0) = 0.057 on the lower branch andE(0) = 0.53 on the upper
branch, shown for parameter valuesK A = 1.0, VA = 1.0, A0 = 0.05, δ = 0.1, ρ = 0.3,
kA = 0.2, andkE = α

2
= 0.1.

g−(E) is positive and bounded away from 0,L−(E−) remains bounded on its range
of existence. In other words, there is a number, sayL∗, which boundsL−(E−)
above,L∗ ≤ L−(E−). This solution branch is depicted by the smaller of the two
curves in Fig.7 with E(0) shown plotted as a function ofL. This solution branch
terminates atL∗ since the trajectories for the phase portrait can only be defined
on the range of definition ofg−(E). A typical solution profile is depicted by the
smaller of the two curves in Fig.8.

The second branch of solutions of interest usesg+(E) on the interval max{Emn,0}
< E < E0. The phase portrait trajectories are solutions of

1

2
E2

x −

∫ E+

E
g+(E)d E = 0 (34)

provided E ≤ E+ ≤ E0. Now, however, sinceg+(E0) = 0, the pointE =
E0, Ex = 0 is a saddle point in the phase plane. Thus, the trajectory emanating
from this point corresponds toL = ∞. It follows that there is a second solution
branch which can be represented asL = L+(E+)with L1 < L <∞. Furthermore,
if Emn < 0, thenL1 = 0. This solution branch is depicted by the larger of the two
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Figure 9. Plot of the ‘function’g(E) = δ
1−ρ (A

−1(E) − E) − keE for K A = 1.0,VA =

1.0, A0 = 0.05, δ = 0.1, kA = 0.2, kE = 0.1, and three different values ofρ.

curves in Fig.7 with E(0) shown plotted as a function ofL. This solution branch
extends toL = ∞ since the trajectory that contains the pointE0 is the unstable
manifold of a saddle point. A typical solution profile is depicted by the larger of
the two curves in Fig.8.

Quorum sensing in a spatially distributed system can now be described. If the
densityρ is too small or the sizeL is small, the small steady solution is attained.
However, if the density is sufficiently large, then as the colony sizeL grows, the
small steady solution ceases to exist, and the solution switches to the large steady
solution. Note that this switch fails ifkE is too large, since then the curveg−(E) is
not strictly positive, and therefore the small solution branch exists for all positiveL.

A second way to describe quorum sensing is as a function of densityρ. We
suppose that there is a colony of a fixed sizeL that is growing so that the densityρ
is slowly increasing.

It is clear from Fig.9 that forρ sufficiently small there is only the single solution
branchg−(E), while forρ sufficiently large the only branch defined for positiveE
is theg+ branch. In other words, ifδ is sufficiently small, there is a value ofρ < 1
above whichEmx < 0. However, ifEmx < 0, the lower branch of solutions fails to
exits. Thus, for any fixedL, there is a value ofρ above which the lower solution
fails to exist. At this value ofρ, the solution must switch to the upper branch, if
stable, thereby dramatically increasing the production of autoinducer.

We have numerically computed a branch of steady-state solutions of (23) and (24)
as a function of the densityρ for fixed domain sizeL. These results are shown in
Fig. 10. We have found that the upper and lower branches are stable while the
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Figure 10. Plot of the bifurcation diagram for the steady states of (23) as a function of the
cell densityρ with L fixed atL = 2. The parameter values areK A = 1.0,VA = 1.0, A0 =

0.05, δ = 0.1, kA = 0.2, kE = 0.1, ρ = 0.3, α = 1.0, andL = 2.0.

middle branch is unstable. As the cell density increases, the production of the au-
toinducer increases slowly until a critical value of the density is reached. At this
point there is a large increase in autoinducer production. Once on the upper branch,
the population maintains a high rate of autoinducer production even if the cell den-
sity decreases. However, if the cell density falls below the value at the knee on the
upper branch, production falls back to a nominal rate.

It has been shown (Davieset al., 1998) that autoinducers can increase polymer
production. With increased polymer the cell density would decrease. Thus we see
that hysteresis assures that the switch to high autoinducer production is not easily
reversed by a decrease in cell density due to an increase in polymer production.
It is also easy to speculate that once the cell density becomes low enough that the
autoinducer is reset to basal levels, the genes responsible for polymer production
are turned off. If there is too much polymer, the diffusion of vital nutrients to the
population could be hindered.

In summary, quorum sensing can be accomplished by increasing the density of a
colony of fixed size, or by increasing the size of a colony of large enough density.

In the next section, stability results are discussed.

4. STABILITY RESULTS

The stability of the steady state can be determined by numerical simulations of
the system or by linearization (Weinberger, 1983).

The following proposition implies that the large and small amplitude steady-state
solutions to our system are stable provided that on the range of the steady solution
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Figure 11. Plot of two different solutions of (23), (24) at t = 200. The parameter values
areK A = 1.0, VA = 1.0, A0 = 0.05, δ = 0.1, kA = 0.2, kE = 0.1, ρ = 0.3, α = 1.0,
andL = 2.0.

(A0, E0), g
′

(E0(x)) < 0. We show this by constructing time-independent upper
and lower solutions that are arbitrarily close to the steady-state solutions.

The system (23), (24) is a cooperative system (quasi-monotone), the right-hand
side of (23) is an increasing function ofE and the right-hand side of (24) is in-
creasing inA. This allows one the following Comparison Principle.

DEFINITION 1. The pair(A, E) is an upper solution pair for the system (23), (26)
if and only if

At ≥ F(A)+
δ

ρ
(E − A) (35)

Et ≥
∂2E

∂x2
+

δ

1− ρ
(A− E)− kE E (36)

Ex(L)+ αE(L) ≥ 0 (37)

Ex(0) ≤ 0. (38)

The pair(A, E) is a lower solution pair if it satisfies the above with each inequality
reversed.

THEOREM 1 (COMPARISON PRINCIPLE ). Let(A(x), E(x)) be a t-independent
upper solution pair for the system(23)–(26) and let(A(x, t), E(x, t)) be the solu-
tion to the system with the initial data(A(x), E(x)). Then A and E are nonincreas-
ing functions of t and approach the largest steady-state solution(A∗(x), E∗(x))
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Figure 12. Plot ofL(t) and E(0, t) starting from constant initial dataE(x,0) = 0.0,
A(x,0) = 0.0, L(0) = 0.01. The parameter values areK A = 1.0, VA = 1.0, A0 = 0.05,
δ = 0.1, kA = 0.2, kE = 0.1, ρ = 0.3,α = 1.0, andL = 2.0.
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Figure 13. Plot ofL(t) and E(0, t) starting from constant initial dataE(x,0) = 0.0,
A(x,0) = 0.0, L(0) = 0.01. The parameter values areK A = 1.0, VA = 1.0, A0 = 0.05,
δ = 0.1, kA = 0.2, kE = 0.1, ρ = 0.3,α = 1.0, andL = 2.0.
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that satisfies A∗(x) ≤ A(x) and E∗(x) ≤ E(x). Similarly, let(A(x), E(x)) be a
lower solution pair to the system and(A(x, t), E(x, t)) a solution with(A(x), E(x))
as initial data. Then(A(x, t), E(x, t)) are nondecreasing in t and tend to the
smallest stationary solution,(A∗(x), E∗(x)) that lies above(A(x), E(x)).

Let (A0(x), E0(x)) be a steady-state solution of (23)–(26) and letε > 0 be fixed
but arbitrary. Consider

Ê(x)= E0(x)+ ε (39)

Â(x)= A−1(E0(x)+ ε). (40)

We show that(Â, Ê) is an upper solution pair provided certain conditions are sat-
isfied. First, we assume that our steady solution lies either on the upper branch of
A−1 or the lower branch. It is clear from Fig.4 that A−1 is an increasing function
of E on these two branches, thus

Â(x)q = A−1(E0(x)+ ε) ≥ A−1(E0(x)) = A0(x)

if ε > 0 is sufficiently small. It follows that(Â, Ê) satisfies (35). It is also clear
that the boundary inequalities (37), (38) are satisfied.

Now consider inequality (36). If we assume thatg is nonincreasing on the range
of E0, then for small enoughε we obtain

Êxx + g(Ê)= E0xx + g(E0+ ε) (41)

≤ E0xx + g(E0) = 0 (42)

and we see that (36) is satisfied. The following result follows from Theorem1.

PROPOSITION 1. Let (A0, E0) be a steady-state solution which lies on the upper
or lower branch of g, g±. If on the range of E0(x), g is nonincreasing, then forε
sufficiently small and positive(A0(x)+ ε, E0(x)+ ε) is an upper solution pair and
(A0(x)− ε, E0(x)− ε) is a lower solution pair. Furthermore, in this case(A0, E0)

is a stable solution of(23)–(26).

While in general we cannot verify thatg± are decreasing functions for all param-
eter values, it is clear from Fig.9 that this is the case forg+(E) for large enough
values ofρ, and forg−(E) for small enough values ofL.

There are also steady solutions that correspond to the middle branch ofg, g0. We
can show that these solutions are unstable.

PROPOSITION 2. Steady-state solutions(A0(x), E0(x)) for which E
′

(A0(x)) <
0 are linearly unstable.
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To prove this, consider the linearization of (23), (24) about a steady solution
(A0, E0)

at = F
′

[A0(x)]a+
δ

ρ
(e− a), (43)

et = exx +
δ

1− ρ
(a− e)− kEe. (44)

Let α(x) = F
′

[A0(x)] −
δ
ρ
, and note thatα(x) = −ρ

δ
E
′

[A0(x)], which is pos-
itive on the middle branch. Suppose that(a,e) is a solution of (43), (44) with
(a(x,0),e(x,0)) = (a0(x),e0(x)) and such thate(x, t) remains bounded for all
t ≥ 0, say|e(x, t)| ≤ M . Then from (43) we see that

at ≥ α(x)a− M
δ

ρ

which implies that

a(x, t) ≥ exp(α(x)t)a0(0)+
Mδ

ρα(x)
(1− exp(α(x)t))

so thata(x, t) cannot remain bounded for allt > 0 if we start with positive initial
data, which implies instability. Ife(x, t) is unbounded fort > 0 starting from
arbitrarily small initial data, then clearly the steady solution is linearly unstable.

5. NUMERICAL SIMULATIONS

In this section we report on numerical simulations which illustrate the stability
results of the previous section. We also indicate how these results may be applica-
ble to biofilms.

We takeα = 1 and scale thex interval to have unit length. In Fig.11 are
displayed the two stable steady states that exist whenL = 2. One is an order
of magnitude larger than the other. The small solution was generated from the
constant initial dataA(x,0) = 0.0 and E(x,0) = 0. The larger solution was
also generated from constant initial data,A(x,0) = 1.0 andE(x,0) = 1.0. Both
solutions are shown at timet = 200. At this time the time derivatives of bothA
andE are less than 10−10 so we take these to be steady states.

One can model a growing population by adding dynamics for the domain length
L. Here we set

dL

dt
= κ(L f − L) (45)

whereκ = 0.04 andL f = 3.
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The time series of a solution of (23), (24) and (45) with constant initial data is
shown in Fig.12. Here we display the length of the intervalL and the value of
the extracellular autoinducer atx = 0, E(0, t) as functions of time. From other
numerical calculations we know that the small amplitude solution does not exist at
L = 2.2. We see that after a lag the solution of the evolution equation approaches
the large amplitude steady solution that exists atL = 3.

To demonstrate the hysteresis indicated in Fig.7, we use the same dynamics for
L as above in a second run untilt = 180 whereupon we setL = 2. This could be
thought of as a major detachment event whereby the biofilm thickness is suddenly
reset to two thirds of its asymptotic thickness. The time series of such a solution
is shown in Fig.13. We see that upon reset, the autoinducer concentration remains
high. The hysteresis assures that the switch to high autoinducer production is not
easily reversed. This is very important for a biofilm since these populations are
often subjected to major detachment and sluffing events whereby there are large
and sudden decreases in population size.

6. DISCUSSION

We have presented a simple model of quorum sensing using autoinduction that is
based on the known biochemistry ofP. aeruginosa. Using this model we demon-
strate that quorum sensing works because the rate of elimination of autoinducer
depends on the colony size and density. Thus, the autoinducer production switches
to its high state when the elimination of autoinducer from the extracellular space is
decreased.

This biochemical switch is hysteretic so that autoinducer production switches on
at different (higher) levels than it switches off. This hysteresis is possibly important
in the regulation of the production of exopolysaccharide, which tends to decrease
bacterial density. The hysteresis predicted by this model investigation has not been
verified experimentally.
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