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The bacterid?>seudomonas aeruginosae the size and density of their colonies to
regulate the production of a large variety of substances, including toxins. This phe-
nomenon, called quorum sensing, apparently enables colonies to grow to sufficient
size undetected by the immune system of the host organism.

In this paper, we present a mathematical model of quorum sensih@éeruginosa

that is based on the known biochemistry of regulation of the autoinducer that is cru-
cial to this signalling mechanism. Using this model we show that quorum sensing
works because of a biochemical switch between two stable steady solutions, one
with low levels of autoinducer and one with high levels of autoinducer.

© 2001 Society for Mathematical Biology

1. INTRODUCTION

The bacteriumPseudomonas aeruginosa an increasingly prevalent human
pathogen, responsible for 12% of hospital-acquired urinary tract infections, 10%
of blood stream infections, and 8% of surgical wound infections. It is also one of
the most common and lethal pathogens responsible for ventilator-associated pneu-
monia in intubated patients, with directly attributable deaths reaching 38%. Cystic
fibrosis patients are characteristically susceptible to chronic infectidh agrug-
inosa which is responsible for high rates of illness and death in this population
(Van Delden and Iglewski, 1998

The ability of P. aeruginosdo invade a potential host relies largely on its ability
to control many of its virulence factors by a mechanism that monitors cell density
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and allows communication between bacteria. That is, isolated production of extra-
cellular virulence factors by a small number of bacteria would probably lead to an
efficient host response neutralizing these factors. However, the typical behavior is
for virulence factors to be expressed by an entire colony only after the colony has
achieved a certain size or density. In this way, cells excrete extracellular virulence
factors only when they can be produced at high enough levels to overcome host
defenses.

Another feature of persisteRt aeruginosanfections in cystic fibrosis patients is
that when cell densities are high enough, the population as a whole begins to pro-
duce copious amounts of exopolysaccharide alginatevén and Deretic, 1996
It is thought that these bacteria grow inside a biofilm [defined as micro-colonies
surrounded by an exopolysaccharide, €#mracklis and Marshall (1990as a
survival strategy since the surrounding polymer matrix protects backe@@rug-
inosagrowing in an alginate ‘slime matrix’ are resistant to antibiotics and disin-
fectants Govan and Deretic, 1996

Recently, a cell-to-cell signaling system has been shown to be involved in the
differentiation ofP. aeruginosaiofilms (Davieset al., 1998. A mutant defective
in the production of a certain signaling molecule formed an abnormal biofilm that
in contrast to the wild type biofilm was sensitive to low concentrations of the de-
tergent sodium dodecyl sulfate (SDS). Furthermore, the addition of the signaling
molecule to the batch culture medium restored production of a slimy biofilm that
was SDS resistanDavieset al., 1999.

The ability of cells to sense their own cell density, to communicate with each
other and to behave as a population instead of individually is called quorum sens-
ing. Quorum sensing is known to occur in a growing humber of examples, includ-
ing sporulation and fruiting body formation yyxococcus xanthusnd antibiotic
production by several species $freptomycesPerhaps the best characterized ex-
ample is in the autoinduction of luminescence in the symbiotic marine bacterium
Vibrio fischerj which colonizes the light organs of certain marine fishes and squids
(Fuquaet al., 1996.

In all of these examples the fundamental mechanism of quorum sensing is the
same, although the biochemical details are surprisingly different. These cell-to-
cell signaling systems are all composed of a small molecule, called an autoinducer,
which is synthesized by an autoinducer synthase, and a transcriptional activator
protein. The production of the autoinducer is regulated by a specific R-protein. The
R-protein by itself is not active without the corresponding autoinducer, but the R-
protein/autoinducer complex binds to specific DNA sequences upstream of the tar-
get genes, enhancing their transcription. Thus, at low cell density, the autoinducer
is synthesized at basal levels and diffuses into the surrounding medium, where it
is diluted. With increasing cell density, however, the intracellular concentration of
the autoinducer increases until it reaches a threshold concentration beyond which
it is produced autocatalytically, resulting in a dramatic increase of product concen-
trations. The autoinducer, therefore, allows the bacteria to communicate with each
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other, to sense their own density, and together with a transcriptional activator to
express specific genes as a population rather than individually.

Quorum sensing is an unusual signaling mechanism for several reasons. First,
there are no membrane surface receptors for the signaling molecule, and since the
autoinducer is produced on the interior of the cell, the extracellular concentration
of autoinducer is generally smaller than the intracellular concentration. One might
therefore question how the autoinducer can act as a signal.

The purpose of this paper is to develop and study mathematical models of quo-
rum sensing, in order to obtain a deeper understanding of how and when this mech-
anism works. We focus on the specific systenPaeruginosalthough the math-
ematical principles are the same in other systems. Our emphasis here is on the
biochemical mechanism underlying quorum sensing. In a related stacheset
al. (2000 found a simple mathematical model appropriat&/tdischerithat had
multiple stable steady states and was controlled by extracellular autoinducer. By
contrast, inWard et al. (2000, a population dynamics approach was taken\Vfor
fischeri and switching behavior in which there was cell differentiation was found
as the colony grew in size. The models in both of these studies were systems of
three first-order, nonlinear, ordinary differential equations. In what follows, we
examine models involving both ordinary and partial differential equations.

2. THE MODEL

The quorum-sensing systemfaeruginosas unusual because it has two some-
what redundant regulatory systems. The first system describBdaaruginosa
was shown to regulate expression of the elastase LasB and was therefore named
thelas system. The two enzymes, LasB elastase and LasA elastase, are responsi-
ble for elastolytic activity which destroys elastin-containing human lung tissue and
causes pulmonary hemorrhages associated Rviteruginosanfections. Thdas
system is composed t#sl, the autoinducer synthase gene responsible for synthesis
of the autoinducer 3-0x0-C12-HSL, and theRgene that codes for transcriptional
activator protein. The LasR/3-o0x0-C12-HSL dimer, which is the activated form of
LasR, activates a variety of genes, but preferentially promlatgsactivity. The
las system is positively controlled by both GacA and Vfr, which are needed for
transcription oflasR The transcription ofasl is also repressed by the inhibitor
Rsal.

The second quorum-sensing systenPimeruginosas named thehl system
because of its ability to control the production of rhamnolipid. Rhamnolipid has
a detergent-like structure and is responsible for the degradation of lung surfactant
and inhibits the mucociliary transport and ciliary function of human respiratory
epithelium. This system is composedrbfi, the synthase gene for the autoinducer
C4-HSL, and thehlR gene encoding a transcriptional activator protein. A diagram
depicting these two systems is shown in HigVan Delden and Iglewski, 1998
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Figure 1. Schematic diagram showing the gene regulation folathendrhl systems in
P. aeruginosa

The first step in our analysis is to find equations describing the kinetics of this
system. For simplicity, we consider only tlaes system. We introduce variables for
all the concentrations (shown in Taldg We assume that the diméris formed
via the law of mass action at rake » and degraded at rake,

dp
I = kraRA—keP. 1)

The enzyme LasR is used in the productiorPo@ind naturally degrades at rddg,
and is produced by the degradationRyfand by lasR mRNA at rate,

R
(jj_t = —kraRA+kpP — kgR + kyr. 2

Similarly, the autoinducer is used in the productiorPoédnd naturally degrades at
rateka, and is produced by the degradationRyfand by the lasl enzyme at rdtg

dA
H = —kRARA+ ka + k2|_ — kAA (3)
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Table 1. Variables used to identify concentrations.

Variable Concentration

LasR
3-0x0-C12-HSL
LasR/3-0x0-C12-HSL

Lasl
RsalL

lasR mRNA

lasl mMRNA

rsaL mRNA

w =" nr-ov>2D

The enzyme Lasl is produced by lasl mRNA at latend degrades at rake,

dL
— =kal —k.L. 4
gt =kl —k (4)

The inhibitor RsaL is produced by rsaL mRNA at r&teand degrades at rake,

ds

— = kyS — ksS. 5

gr = s —ks ()
All messenger RNAs are produced by DNA at rates that are Michaelis—Menten in
type. Thus, for example, the inhibitor rsaL mRNA is produced at a Michaelis—
Menten rate depending dP, and degrades at some natural tate

ds P

— = Ve— —KsS, 6

dt =~ °Ke+P °° ©)
and similarly, lasR mRNA is produced at a Michaelis—Menten rate dependiRg on
and degrades at some natural tateWe also assume that lasR mRNA is produced

at some basal ratg.
dr P

dt = 'K, +P
Finally, the production of lasl mMRNA is activated [ and inactivated bys, de-
grades at ratk, and is produced at some basal figte

— ket +ro. @)

d_ . P 1
dt ~ 'K+ PKs+S

— kil +1o. (8)

We would like to simplify this system by taking into account that some reactions
are fast compared to others. The difficulty here is that the rate constants in the
model are not known. There is evidence that many proteins are more stable than
the mRNA that code for them [see, for examphadersoret al. (1998, Chalfieet
al. (1999 andEhrenberg and Sverredal (19p3f this is the case here, then LasR
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MRNA and lasl mMRNA are much shorter lived than LasR and LasL, respectively,
so thatk. andk; are much larger thaky andkg. With this assumption, we take
andr to be in quasi-steady state, so that

P 1 P
| =V lo, r=V,—— +ry. 9
ki IK|+PKS—|—S+0 K rKr+P+0 9

The variableL can be understood as a first-order linear filter, so thatcksl
with some delay. The simplest approximation to this behavior is to ignore the delay
and take
ksl = kL. (10)

The quantityS inhibits the production of, but it seems not to have much effect
on guorum-sensing behavior. We ignore this variable by eliminating it from the
production term in equatior8y.

With these simplifications, the governing system of equations becomes

aP_ kraARA—KkpP, (11)
dt

dt Kr+ P ’
d_A=—kRARA+ kpP + Va + Ao — kaA (13)
dt KL+ P ’

(with redefined parameters, of course). Finally, since the productigharid R
involves transcription of mMRNA, it is probably slow compared to the binding and
unbinding of R and A to form complexP. Thus, we assume th#t is in quasi-
steady state so that

keP = kraRA (14)
and the governing equations become

dR

—— = _kgR+V 15

dt R + RKR+P+R05 ( )

dA P

“_v — KaA 16

T AK|_+P+AO AA, (16)
k

P=-"2RA (17)
Kp

Next, we need to determine how the density of organisms controls the activity
of this network. We assume that autoinduéediffuses across the cell membrane,
and that the local density (volume fraction) of cellpisThen by assumption, the
local volume fraction of extracellular space is-1p.
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The extracellular autoinducer is assumed to diffuse freely across the cell mem-
brane, with conductanc and naturally degrades at rdte. If we suppose that
the density of cells is uniform and the extracellular space is well mixed, then the
concentration of autoinducer in the extracellular space, derotézigoverned by
the equation

(1— p)@—f + kEE) = §(A—E). (18)

Here the factor - p must be included to scale for the difference between concen-
tration in the extracellular space and concentration viewed as amount per unit total
volume. Similarly, the governing equation for intracellular autoindusenust be
modified to account for diffusion across the cell membrane, yielding

dA P
p(a—VAKL_}_P—A0+kAA>:—8(A—E). (19)

There is some evidence that the transport of the autoinducer may involve both
passive diffusion and a cotransport mechanigteafsoret al., 1999. For this
model we assume that diffusion alone acts to transport the autoinducer [as is ap-
parently correct for thehl system Pearsoret al.,, 1999]. The inclusion here of an
additional cotransport mechanism is possible but seems not to be a crucial ingredi-
ent.

It is now fairly easy to see that this system of equations exhibits quorum sensing.
One way to see this is to take to be in quasi-steady state. This is probably not
a good assumption sindeand E are the same chemical and so probably degrade
at about the same rates inside and outside the cell. However, this assumption al-
lows us to study this system in the phase plane. The behavior is not changed if
a three-variable system is used, but the analysis of the three-variable systems is
substantially more complicated with little increase in insight.

The resulting system is (with redefined parameters)

dR P
q Rm — krR+ Ry, (20)
dA P
R V/\ S — — A 21

whereP = "R@%‘ andd(p) = ka + %((ﬁ'ﬁﬁ%)

Quorum sensing works because of théependence af(p). In particular, when
o is small,d(p), the decay rate foA, is large, while whermp is close to oned(p)
is small. This has the feature of modifying ti#enulicline in an important way.
The nuliclines for the systen2(), (21) are shown in Fig2. Here it is readily seen
that for small values op and for large values o there is a unique steady-state

solution in the positivdR—A quadrant. For small values pfthe steady-state values
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Figgre 2. NuIIc_Iine%TR = —kRR+KVF3r—R,§A+Ro = Oand%/t—* = %vLAo—d(p)A =
0 with three different values of, sﬁown for parameter valu = 2.0,Va = 20,
Kr = 1.0, Kp = 1.0, Ry = 0.05, Ag = 0.05,5 = 02, kg = 0.1, kg = 0.7, and
ka = 0.02.

of RandA are small, while for large values pfthe steady state-values Bfand
A are large.

For intermediate values @f, there are three steady solutions in the positive quad-
rant. The small and large values are stable steady solutions while the intermediate
solution is unstable, a saddle point.

The parametep provides a switch between the two stable steady solutions. For
small values of, there is a unique stable steady state with small valués arid
A. As p increases, two more solutions appear (a saddle node bifurcation), and as
increases yet further, the small solution disappears (another saddle node) leaving a
unique solution, thus initiating a ‘switch’.

It is easy to arrange parameter values that have this switching behavior, and the
switch can be adjusted to occur at any desired density level.

An even simpler model that has the same qualitative behavior (but is not correct
from a biochemical perspective) is found by settRg= A to obtain

dA A2

at _VAiKA+A2 + Ag —d(p)A. (22)
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Figure 3. Plot of%’% = Rarhl + Ag — d(p) A as a function ofA for several values of
o with parameter valueVZ = 1.0, Ka = 1.0, Ag = 0.05,8 = 0.5, kg = 0.1, and
ka = 0.02.

Here, the curvé'@d—f, shown in Fig.3, is a monotone increasing function pfand

for small and large values gfthere is a unique positive steady-state solution. For
small values ofp the steady-state value &fis small, while for large values of

the steady-state value #éfis large.

For intermediate values of the curve‘é—f is ‘n-shaped’ and there are three steady
positive solutions. The small and large values are stable steady solutions while the
intermediate solution is unstable.

The switching behavior is readily observed by varying-or small values op,
there is a unique stable steady state with a small valuk. dks p increases, two
more solutions appear, and aincreases yet further, the small solution disappears
leaving a unigue solution, thus initiating a ‘switch’.

We can now give a verbal explanation of how quorum sensing works. The quan-
tity A, the autoinducer, is produced by cells at some nominal rate. However, the
cell must dump its production @& or else the autocatalytic reaction would turn on.

As the density of cells increases, the dumping process becomes less effective, and
so the autocatalytic reaction is turned on. In other words, quorum sensing takes
place because the ‘drain’ fok backs up. Note that the external concentration of
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A is always smaller than the internal concentratioofThus, A is not actually a
signaling chemical, and there is no necessity for surface receptofs &rd there
is no need to develop high concentrations of autoinducer in the extracellular space.

3. APDE MODEL

While the above model shows the desired behavior in a homogeneous environ-
ment, such as a chemostat, a more realistic model would take into account the
possibility of inhomogeneous distributions of the autoinducer in the extracellular
space, while the cells themselves remain relatively motionless.

We suppose there is a uniform layer of cells of thicknesand fixed volume
fraction p which are attached to a substratum in an aqueous bath. As above, the
cells produce the autoinducer with concentratdmvhich has extracellular con-
centrationE,

d—A:F(A)—l-é(E—A), (23)
dt 0

2
0B OB % A_E)_keE. (24)

at - 9x2 | 1—p

The factorp in equation 23) and the factor 1 p in (24) are necessary to account
for the differences in volume fraction between intracellular and extracellular space.
We assume that the cells occupy the one-dimensional regierxO< L. At the
boundary of the cellular domair,= L, we assume that there is mass transfer into
the bulk fluid. We model this simply by assuming the Robin boundary condition

Ex(L,t) +«E(L,t)=0 (25)

whereq is a positive parameter. At the substratum we impose the Neumann bound-
ary condition

Ex(0,t) = 0. (26)

The goal of this section is to find the steady-state solutions of this pde, i.e.,
) , 8

Exx+—l (A—E)—kegE =0, with F(AD+—-(E—-A =0 (27)
—p P

on0< X < L with Ex(0) = 0 andEy(L) + «¢E(L) = 0.
The analysis of this equation is accomplished in the phase plane. First, we must
determine the nature of the solutions of the equation

F(A)+%(E—A):O. (28)
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Figure 4. Plot of the functiolE(A) = A — §F(A) for Ko = 1.0,Va = 1.0, Ag = 0.05,
§ =0.1,p =0.3, andkp = 0.2.
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Figure 5. Plot of the ‘functiong(E) = l%[)(A—l(E) — E) — kgE for Ko = 1.0,
Va =10, Ag= 005,86 = 0.1, p = 0.3,k = 0.2, andkg = 0.1.

We begin by stating general assumptions for the funcigA), namely that it is
‘n-shaped’ and strictly positive on the intervakO A < A*, and thatF (A*) = 0.
A specific example of the functioR (A) is

F(A) = VAR A+ A (29)
T Kat A2 A ‘
This function is ‘n-shaped’ ika < ?’VTA K% and has only one zero K is suffi-

ciently large.
It is easy to determin& as a function ofA from (28) (shown in Fig.4). We

further assume the@t is sufficiently large so that the functida(A) = A—§ F(A)is

an ‘n-shaped’ function. For the functio9), this occurs Whenevé;)r < % /KiA—

Ka. SinceE(A) = A— £F(A) is ‘'n-shaped’, there are valués,y and Amp, with
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Figure 6. Phase portrait of the solution of the boundary value problem on the upper branch
0+ (E), with parameter valueKp = 1.0, Vpo = 1.0, Ag = 0.05,6 = 0.1, p = 0.3,

ka = 0.2, andkg = «? = 0.1. Dashed lines are the curves on whigh = —«E and

Ex = 0.

Anx < Amn < Ag, Which are local maximum and local minimum, respectively, for
the functionE(A), and thatEh,x = E(Amx). The valueEn, = E(Ann) may be
positive or negative, however, it is required tl&t, < Emx.

Now we invert the functiorie (A) by reversing the axes, and note that the inverse
function has three branches, a lower, middle and upper branch. For each of these
we find the quantity

1o}
9(E) = 1—(A—1<E) — E) —keE, (30)
—p

where
ALE) — gF(A’l(E)) — E. (31)

Of necessityg(E) has three branches, which we denotegasE), go(E), and
0+ (E), shown in Fig5. These are defined on the three subintervalsB < Eq
(for g_(E)), Emn < E < Emx (for go(E)), andEmx < E < Eq (for g, (E)), and
0+ (Eg) = 0. Where they are comparabtg,(E) < go(E) < g, (E).

The final restriction placed on the parameters is that we regdite be small
enough so thag_(E) > 0 on the interval O< E < Epx.
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Figure 7. Steady solution branches wH0) plotted as a function oE shown for pa-
rameter value o = 1.0, Vpo = 1.0, Ag = 0.05,6 = 0.1, p = 0.3, kp = 0.2, and
ke =a?=0.1.

Now we look for solutions of the ordinary differential equation
Exx + g(E) =0 (32)

on the interval 0< x < L and subject to boundary conditiotis (0) = 0 and
Ex(L) = —aE(L) wherea > 0. The easiest way to demonstrate the existence of
such solutions is in th& — E, phase plane, depicted in Fig. In this plane, the
boundary conditions are depicted as two straight liBgs= 0 andEy, = —«E. In
Fig. 6, trajectories are shown for the functign (E) although the trajectories for
g-(E) are qualitatively identical.

We use the functiog_(E) to construct the first solution branch. In fact, for any
E_ with E_ < Eny, the trajectories witle < E_ and

1 E_
—Ef—/ g_(E)YdE=0 (33)
2 E

work. It follows that for eachE_ with 0 < E_ < Emny there is a corresponding
value ofL, sayL = L_(E_), for which this solution exists. Furthermore, since
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Figure 8. Steady solution profildsS(x) plotted as a function of on the interval O< x <
L = 1.0 for which E(0) = 0.057 on the lower branch an8(0) = 0.53 on the upper
branch, shown for parameter valuég = 1.0, Vo = 1.0, Ag = 0.05,§ = 0.1, p = 0.3,
ka = 0.2, andkg = o2 = 0.1.

g_(E) is positive and bounded away fromlO, (E_) remains bounded on its range
of existence. In other words, there is a number, kaywhich boundsL _(E_)
above,L, < L_(E_). This solution branch is depicted by the smaller of the two
curves in Fig.7 with E(0) shown plotted as a function &f. This solution branch
terminates aL, since the trajectories for the phase portrait can only be defined
on the range of definition of_(E). A typical solution profile is depicted by the
smaller of the two curves in Fi.

The second branch of solutions of interest ue€E) on the interval mafe€mn, 0}
< E < Ep. The phase portrait trajectories are solutions of

E+

%Ei— g (E)YdE=0 (34)
E

providedE < E, < Eg. Now, however, sincg,(Eq) = 0, the pointE =

Eo, Ex = 0 is a saddle point in the phase plane. Thus, the trajectory emanating
from this point corresponds b = oco. It follows that there is a second solution
branch which can be representedas L, (E;)withL; < L < oo. Furthermore,

if Emn < 0, thenL; = 0. This solution branch is depicted by the larger of the two
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Figure 9. Plot of the ‘functiong(E) = 1f—p(A—l(E) —E) —keE for Ka = 1.0, Vp =
1.0, Ag =0.056 = 0.1, ka = 0.2, kg = 0.1, and three different values pf

curves in Fig.7 with E(0) shown plotted as a function &f. This solution branch
extends toL = oo since the trajectory that contains the polfi is the unstable
manifold of a saddle point. A typical solution profile is depicted by the larger of
the two curves in Fig8.

Quorum sensing in a spatially distributed system can now be described. If the
densityp is too small or the sizé& is small, the small steady solution is attained.
However, if the density is sufficiently large, then as the colony sizgows, the
small steady solution ceases to exist, and the solution switches to the large steady
solution. Note that this switch fails Kg is too large, since then the curge(E) is
not strictly positive, and therefore the small solution branch exists for all positive

A second way to describe quorum sensing is as a function of depsitye
suppose that there is a colony of a fixed dizéhat is growing so that the density
is slowly increasing.

It is clear from Fig9 that for p sufficiently small there is only the single solution
branchg_(E), while for p sufficiently large the only branch defined for positize
is theg, branch. In other words, if is sufficiently small, there is a value pf< 1
above whichE, < 0. However, ifEnx < 0, the lower branch of solutions fails to
exits. Thus, for any fixed., there is a value op above which the lower solution
fails to exist. At this value op, the solution must switch to the upper branch, if
stable, thereby dramatically increasing the production of autoinducer.

We have numerically computed a branch of steady-state solutioB8)afr{d 24)
as a function of the density for fixed domain size.. These results are shown in
Fig. 10. We have found that the upper and lower branches are stable while the



110 J. D. Dockery and J. P. Keener

A(0)
(98]

0 T L L L L L L L
0 01 02 03 04 05 06 07 08 09 1
P
Figure 10. Plot of the bifurcation diagram for the steady state&3)fgs a function of the

cell densityp with L fixed atL = 2. The parameter values afen = 1.0, Vao = 1.0, Ag =
0.05,§ =0.1,ka =0.2,kg = 0.1, p = 0.3, = 1.0, andL = 2.0.

middle branch is unstable. As the cell density increases, the production of the au-
toinducer increases slowly until a critical value of the density is reached. At this
point there is a large increase in autoinducer production. Once on the upper branch,
the population maintains a high rate of autoinducer production even if the cell den-
sity decreases. However, if the cell density falls below the value at the knee on the
upper branch, production falls back to a nominal rate.

It has been showrDavieset al., 1998 that autoinducers can increase polymer
production. With increased polymer the cell density would decrease. Thus we see
that hysteresis assures that the switch to high autoinducer production is not easily
reversed by a decrease in cell density due to an increase in polymer production.
It is also easy to speculate that once the cell density becomes low enough that the
autoinducer is reset to basal levels, the genes responsible for polymer production
are turned off. If there is too much polymer, the diffusion of vital nutrients to the
population could be hindered.

In summary, quorum sensing can be accomplished by increasing the density of a
colony of fixed size, or by increasing the size of a colony of large enough density.

In the next section, stability results are discussed.

4. STABILITY RESULTS

The stability of the steady state can be determined by numerical simulations of
the system or by linearizatiomM(einberger, 1983

The following proposition implies that the large and small amplitude steady-state
solutions to our system are stable provided that on the range of the steady solution
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Figure 11. Plot of two different solutions 0238), (24) att = 200. The parameter values
areKp =1.0,Va = 1.0, Ag =0.05,6 =0.1,kp = 0.2,kg = 0.1, p = 0.3, = 1.0,
andL = 2.0.

(Ao, Eo), g (Eo(x)) < 0. We show this by constructing time-independent upper
and lower solutions that are arbitrarily close to the steady-state solutions.

The systemZ3), (24) is a cooperative system (quasi-monotone), the right-hand
side of @3) is an increasing function dE and the right-hand side oR4) is in-
creasing inA. This allows one the following Comparison Principle.

DEFINITION 1. The pair(A, E) is an upper solution pair for the syste&8), (26)
if and only if

A= F(A) + %(E - A (35)

— 3%E 5§ — — —
Etiwﬁ‘m(A—E)—kEE (36)
Ex(L)+aE(L)>0 (37)
Ex(0) <0. (38)

The pair(A, E) is a lower solution pair if it satisfies the above with each inequality
reversed.

THEOREM 1 (COMPARISON PRINCIPLE ). Let(A(x), E(x)) be a t-independent
upper solution pair for the syste(@3)—26) and let(A(x, t), E(x, t)) be the solu-
tion to the system with the initial dat@(x), E(x)). Then A and E are nonincreas-
ing functions of t and approach the largest steady-state solutirix), E*(x))
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Figure 13. Plot ofL(t) and E(O, t) starting from constant initial dat&(x, 0) = 0.0,
A(x,0) = 0.0, L(0) = 0.01. The parameter values &g, = 1.0, Vp = 1.0, Ag = 0.05,
§=01,kpn=0.2,kg =0.1,p =03, = 1.0, andL = 2.0.
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that satisfies Ax) < A(x) and E*(x) < E(x). Similarly, let(A(x), E(x)) be a
lower solution pair to the system aé(x, t), E(x, t)) a solution with(A(x), E(x))
as initial data. Then(A(x, t), E(x,t)) are nondecreasing in t and tend to the
smallest stationary solutiori A, (X), E.(x)) that lies above A(x), E(X)).

Let (Ag(X), Eg(x)) be a steady-state solution &3}—(26) and lete > 0 be fixed
but arbitrary. Consider

E(X) = Eg(X) + ¢ (39)
Ax) = A"H(Eo(X) + €). (40)

We show tha( A, E) is an upper solution pair provided certain conditions are sat-
isfied. First, we assume that our steady solution lies either on the upper branch of
A~1 or the lower branch. Itis clear from Fig.that A-! is an increasing function

of E on these two branches, thus

Ax)q = AH(Eg(x) + €) > A H(Eg(x)) = Ag(X)

if ¢ > 0 is sufficiently small. It follows thatA, E) satisfies 85). It is also clear
that the boundary inequalitie87), (38) are satisfied.

Now consider inequalitydp). If we assume thaj is nonincreasing on the range
of Ep, then for small enough we obtain

éxx + g(é) = Eoxx + 9(Eo + €) (41)
= EOxx + g(EO) =0 (42)

and we see thaB) is satisfied. The following result follows from Theoreim

PROPOSITION 1. Let(Ag, Ep) be a steady-state solution which lies on the upper
or lower branch of g, g. If on the range of k(X), g is nonincreasing, then fer
sufficiently small and positiveAo(X) + €, Eo(X) + €) is an upper solution pair and
(Ap(X) — €, Eg(X) — €) is a lower solution pair. Furthermore, in this casfyg, Eo)

is a stable solution of23)—26).

While in general we cannot verify thgt are decreasing functions for all param-
eter values, it is clear from Fi@.that this is the case fay, (E) for large enough
values ofp, and forg_(E) for small enough values df.

There are also steady solutions that correspond to the middle bragchoiwWe
can show that these solutions are unstable.

PROPOSITION 2. Steady-state solutions\o(x), Eq(x)) for which E (Ag(X)) <
0 are linearly unstable.
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To prove this, consider the linearization &3}, (24) about a steady solution
(Ao, Eo)

I 8
a = F [Ao(X)]a+ ;(e —a), (43)

€& = 6x + (a—e) — kge. (44)

)
1-p
Leta(x) = F[A(X)] — ¢, and note that(x) = —2E'[As(X)], which is pos-
itive on the middle branch. Suppose that e) is a solution of 43), (44) with

(ax, 0), e(x, 0)) = (ag(x), ep(x)) and such thae(x, t) remains bounded for all
t > 0, sayle(x, t)| < M. Then from @3) we see that

8
a >a(X)a— M—
o)
which implies that

alx,t) > expla(X)t)ag(0) + ﬂ(1 — expla(X)t))
pa(X)

so thata(x, t) cannot remain bounded for dll> 0 if we start with positive initial
data, which implies instability. 1&(x,t) is unbounded fot > O starting from
arbitrarily small initial data, then clearly the steady solution is linearly unstable.

5. NUMERICAL SIMULATIONS

In this section we report on numerical simulations which illustrate the stability
results of the previous section. We also indicate how these results may be applica-
ble to biofilms.

We takea = 1 and scale the interval to have unit length. In Figll are
displayed the two stable steady states that exist whea 2. One is an order
of magnitude larger than the other. The small solution was generated from the
constant initial dataA(x,0) = 0.0 andE(x,0) = 0. The larger solution was
also generated from constant initial dafgx, 0) = 1.0 andE(x, 0) = 1.0. Both
solutions are shown at tinte= 200. At this time the time derivatives of both
andE are less than 13° so we take these to be steady states.

One can model a growing population by adding dynamics for the domain length

L. Here we set dL
— =«x(Lf =L 45
T k(Ly ) (45)

wherex = 0.04 andL; = 3.
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The time series of a solution 028), (24) and @5) with constant initial data is
shown in Fig.12. Here we display the length of the intervaland the value of
the extracellular autoinducer at= 0, E(0, t) as functions of time. From other
numerical calculations we know that the small amplitude solution does not exist at
L = 2.2. We see that after a lag the solution of the evolution equation approaches
the large amplitude steady solution that existk at 3.

To demonstrate the hysteresis indicated in Fjgve use the same dynamics for
L as above in a second run urtti= 180 whereupon we sé&t = 2. This could be
thought of as a major detachment event whereby the biofilm thickness is suddenly
reset to two thirds of its asymptotic thickness. The time series of such a solution
is shown in Fig13. We see that upon reset, the autoinducer concentration remains
high. The hysteresis assures that the switch to high autoinducer production is not
easily reversed. This is very important for a biofilm since these populations are
often subjected to major detachment and sluffing events whereby there are large
and sudden decreases in population size.

6. DISCUSSION

We have presented a simple model of quorum sensing using autoinduction that is
based on the known biochemistry Bfaeruginosa Using this model we demon-
strate that quorum sensing works because the rate of elimination of autoinducer
depends on the colony size and density. Thus, the autoinducer production switches
to its high state when the elimination of autoinducer from the extracellular space is
decreased.

This biochemical switch is hysteretic so that autoinducer production switches on
at different (higher) levels than it switches off. This hysteresis is possibly important
in the regulation of the production of exopolysaccharide, which tends to decrease
bacterial density. The hysteresis predicted by this model investigation has not been
verified experimentally.
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