Solutions toExam 2: MTG 3214*

November 4, 2008

Name:
 Student ID:

This is a closed book exam and the use of calculators is not allowed.

1. Prove: The feet of the perpendiculars from a point to the sides of a triangle are collinear if and only if the point lies on the circumcircle.
Solution: This is Theorem 2.51.
2. Prove that the nine point circle of the triangle formed by connecting the excenters of a given triangle $A B C$, is the circumcircle of triangle $A B C$.
Solution: (This is problem 1.8.3 which was a monthly HW problem)
Consider Fig 1.4B on p.12. The 9 point circle of $\triangle I_{a} I_{b} I_{c}$ must certainly contain the 3 feet of its altitudes. I claim that these feet are A, B and C. To prove this, notice that the internal and external bisector of any angle are always perpendicular. (convince yourself by drawing a picture if you don't see this!).
On the other hand, there is only 1 circle that contains the 3 points A, B and C, namely the circumcircle of $\triangle A B C$. Consequently, this circumcircle must be the 9 point circle of $\triangle I_{a} I_{b} I_{c}$ because we know that the latter contains A, B and C.
3. - Define the power of a point with respect to a circle. Using this definition, give 3 examples (draw figures) that show that the power of a point with respect to a circle can be negative, zero or positive.

$$
\text { Power of } \mathrm{P} \text { with respect to circle }=d^{2}-R^{2},
$$

where d is the distance between the center of the circle and P, and R is the radius of the circle. Figure 2.1 A and 2.1 B are examples of a point having negative and positive power respectively (for a zero power draw P on the circle).

- What is a Simson line? A degenerate pedal triangle, associated to a given triangle. This happens if (and only if) the pedal point belongs to the circumcircle of the given triangle. This is exactly what I asked you to prove in the first problem of this exam.
- Let three distinct circles C_{1}, C_{2} and C_{3} be given. True of false: The radical center of the three circles always exists (prove if true; give counterexample if false).
False, there are several possible counterexamples. Here's one: Pick 3 circles having pairwise distinct centers that belong to a line (the centers are collinear). For each pair of circles the radical axis is perpendicular to this line, so the 3 radical axes will be parallel. This implies they don't intersect, and thus the radical center does not exist.
- Let the power of a point with respect to some circle be positive. Interpret this power geometrically. It is the square of the length of the tangent.
- The orthic triangle of a given triangle ABC is the pedal triangle with respect to a certain point. Which point? Explain your answer.
It is the orthocenter of the triangle ABC .

[^0]
[^0]: *Instructor: Patrick De Leenheer.

