Solutions to a couple of problems: MTG 3214*

October 29, 2008

Problem 1.8.5 on p. 22 (assume problem 1.6 .4 on p. 18 has been solved; I'll do this later)
First a remark: The statement could have been more precise. For instance: "the 9 point circle cuts the sides at angles $|B-C|,|A-B|$ and $|A-C|$, seen from the points A, C and B respectively". An equivalent statement is: "the 9 point circle cuts the sides at angles $2|B-C|, 2|A-B|$ and $2|A-C|$, seen from its center N ".

I will prove the last statement. Refer to Fig. 1.8B. The chord $D A^{\prime}$ is seen from N under angle:

$$
\begin{aligned}
\prec D N A^{\prime} & =2 \prec D K A^{\prime}\left(\text { since } \mathrm{D}, \mathrm{~K}, \mathrm{~A}^{\prime} \text { are on circle with center } \mathrm{N}\right) \\
& =2 \prec H K N(\text { same angles }) \\
& =2 \prec H A O(\text { since } \triangle H K N \sim \triangle H A O, \text { reason below }) \\
& =2|B-C|(\text { by problem } 1.8 .5),
\end{aligned}
$$

There holds that $\triangle H K N \sim \triangle H A O$ by SAS, since $A H=2 K H$, the angles at H are the same, and $H O=2 H N$.

Problem 1.6.4 on p. 18
Referring to Fig. 1.6A, we need to show that $\prec H A O=|B-C|$. We have

$$
\begin{equation*}
A=\prec B A C=\prec B A D+\prec H A O+\prec O A C . \tag{1}
\end{equation*}
$$

We know that

$$
\begin{equation*}
\prec B A D=90^{\circ}-B(\text { consider the right-angled } \triangle B A D) \tag{2}
\end{equation*}
$$

and that

$$
\begin{equation*}
\prec O A C=\prec O C A(\triangle A O C \text { is isosceles because } \mathrm{O} \text { is circumcenter })=90^{\circ}-B \tag{3}
\end{equation*}
$$

where the last equality holds for a similar reason that in Fig. 1.6.A, $\prec O B C=\alpha=90^{\circ}-A$ holds.
Plugging (2), (3) in (1), and solving for $\prec H A O$, yields:

$$
\prec H A O=A-180^{\circ}+2 B=B-C,
$$

which is $|B-C|$ since here $B>C$ (if B were $<C$ instead, you would find that $\prec H A O=C-B$, which is of course equal to $|B-C|$).

[^0]
[^0]: *Instructor: Patrick De Leenheer.

