Practice Exam 3: MAP 4305*

1. Does

$$
5 x y^{\prime \prime}+4\left(1-x^{2}\right) y^{\prime}+y=0, \quad x>0
$$

have a solution which is bounded near zero? Notice that to answer this question, you only need to consider the indicial equation.
2. Determine the form of a series expansion about $x=0$ of 2 linearly independent solutions to:

$$
x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=0, \quad x>0
$$

Do not find a recursion formula for the coefficients.

3. Find the first three non-zero terms in a series expansion about $x=0$ of 2 linearly independent solutions to:

$$
3 x y^{\prime \prime}+(2-x) y^{\prime}-y=0, \quad x>0
$$

4. Draw solutions in the (x, y) plane of the following system in polar coordinates:

$$
\begin{aligned}
\dot{r} & =\sin r \\
\dot{\theta} & =-1
\end{aligned}
$$

Are there any non-trivial periodic solutions? If yes, are they limit cycles? If there are non-trivial periodic solutions, how many are there, and what can be said about their stability?
5. The Legendre polynomials $P_{n}(x)$ satisfy the following recurrence relation:

$$
(n+1) P_{n+1}(x)=(2 n+1) x P_{n}(x)-n P_{n-1}(x)
$$

Given that $P_{0}(x)=1$ and $P_{1}(x)=x$, determine $P_{2}(x), P_{3}(x)$ and $P_{4}(x)$.

