Lemma used to prove Rodrigues’s formula 1*

November 7, 2007

We showed that P, (z), the Legendre polynomial of degree n, satisfies Rodrigues’s formula:
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provided the following Lemma is proved.
Lemma

The polynomial p,(z) = (ﬁ% (> —1)") (n = 1,2,...) is orthogonal to any polynomial of
degree less than n.

P,(z) (z*>=1)"), n=0,1,2,...,

Proof. Let g(z) be a polynomial of degree less than n and consider.
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We need to show that this integral is 0 for alln =1,2,....
Integrating by parts once yields:
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Repeating this several times (in total n — 1 times) we get that this integral equals:
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There are only a finite number of terms because ¢(™ (x) = 0 (recall that g is a polynomial of degree
less than n).
We write this more compactly:
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Notice that we’ll be done if we can prove the following:
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w((ztn”) =l =0, foralln=1,2,... and j =0,1,...,n — 1.

The proof is by induction on n. The assertion is immediate if n = 1. So let’s assume the assertion
is true for n, and try to show it is true for n + 1. That is, we try to show that:
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For j = 0 this is obvious, so we assume that j > 0. Then
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where we used the formula for the (j — 1)th derivative of a product! The last factor in each term
is zero by the induction hypothesis.
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IThis formula says that for two sufficiently smooth functions f(x) and g(z), there holds that (fg)" =

ZZ:O (Z) f("_k)g(k). This formula is an application of the binomial formula and can be proved by induction.



