Practice Exam 3: MAP 4305*

1. Calculate $\mathrm{e}^{A t}$ for

$$
A=\left(\begin{array}{llll}
2 & 1 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 3 & 1 \\
0 & 0 & 0 & 3
\end{array}\right)
$$

2. Verify that the region containing the origin and bounded by the line segments $L_{1}: y=x+6, x \in[-3,0]$, $L_{2}: y=6, x \in[0,3], L_{3}: x=3, y \in[-3.6], L_{4}: y=x-6, x \in[0,3], L_{5}: y=-6, x \in[-3,0]$, and $L_{6}: x=-3, y \in[-6,3]$ is a trapping region for the Van der Pol oscillator:

$$
\begin{aligned}
\dot{x} & =y+x-x^{3} / 3 \\
\dot{y} & =-x
\end{aligned}
$$

Explain why this region contains a non-constant periodic solution.
3. Using Lyapunov's direct method, establish the stability properties of the equilibrium at the origin of the system:

$$
\begin{aligned}
\dot{x} & =y-x \\
\dot{y} & =-2 x^{3}-y^{3}
\end{aligned}
$$

4. What is the solution to the following IVP:

$$
\dot{x}=A x+f(t), \quad x(0)=x_{0}
$$

where

$$
A=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right), \quad f(t)=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \quad x_{0}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

5. Is the following statement true?

$$
\mathrm{e}^{A} \mathrm{e}^{B}=\mathrm{e}^{B} \mathrm{e}^{A}
$$

If yes, prove it; if no, provide a counterexample.

