Practice Exam 2: MAP 4305*

1. Find the positive eigenvalues and eigenfunctions of the following eigenvalue problem:

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)+y^{\prime}(0)=y(\pi)=0
$$

2. Find conditions on f so that the following non-homogeneous BV problem has a solution:

$$
y^{\prime \prime}-y^{\prime}+3 y=f, \quad y(0)=y(\pi)=0
$$

3. Are the vector functions

$$
\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
t \\
t \\
t
\end{array}\right),\left(\begin{array}{l}
t^{2} \\
t^{2} \\
t^{2}
\end{array}\right)
$$

defined for $t \in \mathbb{R}$, linearly independent? If yes, can they be a fundamental solution set of a system $\dot{x}=A(t) x$ with $x \in \mathbb{R}^{3}$?
4. Solve the following IVP:

$$
\dot{x}=\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right) x, \quad x(0)=\binom{1}{0}
$$

