## Practice Exam 1: MAP 4305*

1. Does

$$
x y^{\prime \prime}+(x+2) y^{\prime}-y=0, \quad x>0
$$

have a solution which is bounded near zero? Notice that to answer this question, you only need to consider the indicial equation.
2. Determine the form of a series expansion about $x=0$ of 2 linearly independent solutions to:

$$
x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=0, \quad x>0
$$

Do not find a recursion formula for the coefficients.
3. Let $J_{\nu}(x)$ be the Bessel function of the first kind of order $\nu \geq 0$ :

$$
J_{\nu}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!\Gamma(1+\nu+n)}\left(\frac{x}{2}\right)^{2 n+\nu}
$$

Prove that

$$
J_{\nu+1}(x)=J_{\nu-1}(x)-2 J_{\nu}^{\prime}(x)
$$

4. Determine the set of convergence (and not just the radius of convergence) of the power series:

$$
\sum_{n=0}^{\infty} \frac{(n+3) 1}{(n+2)!}(x+1)^{n}
$$

5. Find the first three non-zero terms in a series expansion about $x=0$ of 2 linearly independent solutions to:

$$
3 x y^{\prime \prime}+(2-x) y^{\prime}-y=0, \quad x>0
$$

