Homework assignment 1^{*}

Due date: September 18

1. Legendre's equation

Find the first 7 terms of the power series expansion about $x=0$ of the general solution to Legendre's equation:

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+p(p+1) y=0
$$

where p is an arbitrary real parameter.
These general solutions are called Legendre's functions. Explain why they are called Legendre polynomials in case p is a positive integer.

2. Method of Frobenius I

Determine the form of a series expansion about $x=0$ of 2 linearly independent solutions to

$$
x y^{\prime \prime}-s y^{\prime}+x^{3} y=0
$$

where s is an arbitrary real number. Your answer should depend on the value of s.

3. Method of Frobenius II

Find the first 3 terms of the series expansion about $x=0$ of 2 linearly independent solutions to

$$
x^{2} y^{\prime \prime}-x^{2} y^{\prime}+\left(x^{2}-2\right) y=0
$$

4. Property of the Gaussian hypergeometric function.

Denoting the Gaussian hypergeometric function by $F(\alpha, \beta, \gamma ; x)$, show that

$$
\ln (1+x)=x F(1,1,2 ;-x)
$$

5. Properties of Bessel functions.

Denoting the Bessel function of the first kind of order $\nu>0$ by $J_{\nu}(x)$, show that the following properties hold:

$$
\frac{d}{d x}\left(x^{-\nu} J_{\nu}(x)\right)=-x^{-\nu} J_{\nu+1}(x) \text { and } J_{\nu+1}(x)=\frac{2 \nu}{x} J_{\nu}(x)-J_{\nu-1}(x)
$$

[^0]
[^0]: *MAP 4305; Instructor: Patrick De Leenheer.

