Practice Exam 2: MAP 2302*

1. Solve the following IVP:

$$
y^{\prime \prime}+5 y^{\prime}+4 y=0, \quad y(0)=1, \quad y^{\prime}(0)=0
$$

Answer:

$$
\frac{4}{3} \mathrm{e}^{-t}-\frac{1}{3} \mathrm{e}^{-4 t}
$$

2. Given is an RC-circuit with $R=1$ (Ohm) and $C=0.5$ (Farad), driven by a generator that delivers $E(t)=\sin t$ (Volts). Suppose that the initial voltage over the capacitor is 1 Volt. Determine the voltage $v_{C}(t)$ over the capacitor.
Answer:

$$
v_{C}(t)=\frac{22}{5} \mathrm{e}^{-2 t}+\frac{4}{5}\left(\sin (t)-\frac{\cos (t)}{2}\right)
$$

3. What is the structure of the particular solution to:

$$
y^{\prime \prime}+2 y^{\prime}+2 y=\left(t^{2}+1\right) \mathrm{e}^{-t} \cos (t)
$$

Answer:

$$
t\left(A_{2} t^{2}+A_{1} t+A_{0}\right) \mathrm{e}^{-t} \cos (t)+t\left(B_{2} t^{2}+B_{1} t+B_{0}\right) \mathrm{e}^{-t} \sin (t)
$$

\bullet

$$
y^{\prime \prime}-4 y^{\prime}+4 y=(t+3) \mathrm{e}^{2 t}+\sin (t)+t \mathrm{e}^{t}
$$

Answer:

$$
t^{2}\left(A_{1} t+A_{0}\right) \mathrm{e}^{2 t}+B_{1} \cos (t)+B_{2} \sin (t)+\left(C_{1} t+C_{0}\right) \mathrm{e}^{t}
$$

4. Find the general solution on the interval $(-\pi / 6, \pi / 6)$ of

$$
y^{\prime \prime}+9 y=\tan (3 t)
$$

Answer:

$$
v_{1}(t) y_{1}(t)+v_{2}(t) y_{2}(t),
$$

where

$$
y_{1}(t)=\cos (3 t), \quad y_{2}(t)=\sin (3 t), \quad v_{1}(t)=-\frac{1}{9} \ln |\sec (3 t)+\tan (3 t)|+\frac{1}{9} \sin (3 t), \quad v_{2}(t)=-\frac{1}{9} \cos (3 t)
$$

5. We discussed mass-spring-damper systems, modeled by:

$$
m x^{\prime \prime}+b x^{\prime}+k x=0
$$

where m, b and k are positive and denote the mass, damping coefficient and spring coefficient respectively.
Suppose we consider instead:

$$
m x^{\prime \prime}-b x^{\prime}+k x=0
$$

where m, b and k are still assumed to be positive. Notice that we simply replaced b by $-b$. Interpret this change physically. What kind of solutions do you expect, based on this physical interpretation? Now prove that all non-zero solutions are unbounded, that is, show that for any solution $x(t)$ holds that

$$
\lim _{t \rightarrow \infty}|x(t)|=\infty
$$

Does this confirm your physical interpretation?

[^0]Answer: Expect oscillations of increasing amplitude.

$$
\begin{aligned}
& x(t)=c_{1} \mathrm{e}^{\left(b+\sqrt{b^{2}-4 m k}\right) t / 2}+c_{2} \mathrm{e}^{\left(b-\sqrt{b^{2}-4 m k}\right) t / 2} \text { if } b^{2}-4 m k>0 \\
& x(t)=\left(c_{1}+c_{2} t\right) \mathrm{e}^{b t / 2} \text { if } b^{2}-4 m k=0 \\
& x(t)=c_{1} \mathrm{e}^{b t / 2} \cos \left(\sqrt{4 m k-b^{2}}\right)+c_{2} \mathrm{e}^{b t / 2} \sin \left(\sqrt{4 m k-b^{2}}\right) \text { if } b^{2}-4 m k<0
\end{aligned}
$$

In all cases, it's clear that when $c_{1} c_{2} \neq 0,|x(t)| \rightarrow+\infty$ since $b>0$.
6. Find 2 linearly independent solutions of the system:

$$
\begin{aligned}
& \frac{d x}{d t}=x+y \\
& \frac{d y}{d t}=3 x-y
\end{aligned}
$$

Answer:

$$
\binom{1}{1} \mathrm{e}^{2 t},\binom{1}{-3} \mathrm{e}^{-2 t}
$$

[^0]: *Instructor: Patrick De Leenheer.

