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Abstract
Weconsider amodifiedHolling-type II predator–preymodel, based on the premise that
the search rate of predators is dependent on the prey density, rather than constant. A
complete analysis of the global behavior of the model is presented, and shows that the
model exhibits a dichotomy similar to the classical Holling-type II model: either the
coexistence steady state is globally stable; or it is unstable, and then a unique, globally
stable limit cycle exists. We discuss the similarities, but also important differences
between our model and the Holling-type II model. The main differences are that: 1.
The paradox of enrichment which always occurs in the Holling-type II model, does
not always occur here, and 2. Even when the paradox of enrichment occurs, predators
can adapt by lowering their search rate, and effectively stabilize the system.
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1 Introduction

Predator–prey interactions are among the most common in many ecological systems,
and have received considerable attention. A prototype model that captures this is:

Ṅ = r N

(
1 − N

K

)
− f (N )P

Ṗ = P (e f (N ) − m)

Here, N and P denote the prey and predator density, respectively, each expressed as
numbers per unit area. In the absence of the predator, the prey is assumed to grow
logistically, characterized by the positive parameters r and K representing the prey’s
maximal per capita growth rate, and carrying capacity, respectively. The prey is con-
sumed by the predator at a rate f (N ) per unit of predator density, and is assumed to
depend on the prey density. The choice of the functional form for this rate function
f (N ), which is commonly known as the functional response, has important implica-
tions for the model behavior. In this paper, we propose a specific functional response
that incorporates particular predator behavior, that will be explained below. The posi-
tive parametersm and e are the predator’s mortality rate, and the conversion efficiency
of prey into predator, respectively. The parameter e represents the number (or density)
of predators obtained, per consumed prey (or density of prey). Since we shall assume
throughout this paper that e is a constant, we can scale it out by setting N̄ = N ,
P̄ = P/e and f̄ (N ) = e f (N ). In these transformed variables, and after dropping the
bars, the model takes the following form:

Ṅ = r N

(
1 − N

K

)
− f (N )P (1)

Ṗ = P ( f (N ) − m) (2)

A common choice for f (N ) is the Holling type II functional response:

f I I (N ) = sN

sHN + 1
, (3)

where s and H are positive constants representing the predator’s search (or attack) rate,
and the handling time, respectively. The main qualitative features of this functional
are that it is zero when N equals zero, is increasing, saturates for large prey densities
at 1/H , and is concave (the second derivative of f I I (N ) is negative for all N ≥ 0).
The latter property implies that although the per-predator consumption rate increases
with prey density N , it is attenuated (i.e., it slows down) for larger values of N .

Using a Holling type II functional response in (1)–(2) yields the Holling-type II
model Holling (1959), which is often referred to as the Rosenzweig-Macarthur model
Rosenzweig and MacArthur (1963), although the latter model is more general. The
Holling-type II model is one of the benchmark predator–prey models in ecology. To
understand the main motivation for this paper, it is useful to review a mechanistic
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derivation of the Holling type II functional [2], Dawes and Souza (2013), Geritz and
Gyllenberg (2012) here: Consider a sufficiently long window of time T during which
an average predator catches M prey in a landscape where the prey density is fixed at
N . Then the functional response equals M/T :

f I I (N ) = M

T
.

Let s be the search rate, i.e. the area searched by the average predator per unit of
time. If H is the time spent handling a single prey, then the average predator will
spend a total amount of T − MH units of time searching for prey, during which the
predator covers an area of s(T − MH). The average predator therefore catches a total
of Ns(T − mH) prey, and thus:

M = Ns(T − MH).

Dividing by T , and solving for f I I (N ) = M/T yields:

f I I (N ) = M

T
= sN

sHN + 1
,

which is Holling’s type II functional response. Next we offer a conceptual framework
to determine the value of s in practice. Imagine that a predator moves in a plane
at a constant velocity, meaning that its direction and magnitude v are fixed. It seems
plausible that field biologists can determine relatively accurate estimates of v. Suppose
that at any fixed time, the predator is centered in a disk of radius R, and is capable to
instantaneously search this disk for prey. Assume now that the predator moves for a
period of time T through the plane at the constant velocity v. The area searched by the
predator in this time interval [0, T ] is equal to: (2R)(vT ) + πR2 (the sum of the area
of a rectangle of length vT and width 2R, and the area of two half-disks with radius
R). Thus, the search rate during this time interval equals:

2Rv + πR2

T
.

Letting T → +∞, we obtain the predator’s search rate:

s = 2vR. (4)

Clearly, one can make different assumptions on how the predator moves (e.g. by
allowing deterministic or random changes to the direction of movement and/or speed
v; or assume diffusive movement etc), and these will lead to different values of s.
However, it is likely that the predator’s top speed and maximal search radius are well-
documented for many predators. The formula above can then be used to compute a
reasonable upper bound for the predator’s search rate s.

The main purpose of this paper is to investigate the implications on the model
behavior when the assumption that the search rate s is constant, is relaxed. It
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seems plausible that when predators survey the environment they operate in, and
sense the prey density, they may adapt their search rate based on the perceived prey
density.We shall focus on a casewhere predators always increase their search ratewhen
they perceive higher prey densities. Moreover, we assume that when the prey is absent,
predators cease to search, and that the search rate is limited by a maximally achievable
search rate, perhaps due to physiological limitations of the predators and/or physical
constraints imposed by the environment. Experimental work in Hassell et al. (1977)
has revealed that the search rate of several invertebrate predators depends on the prey
density. These include the predators Notonecta glauca, Coccinella Septempunctata,
Aphidius uzbeckistanicus, Plea atomaria, Nemeritis canescens, Cyclops bicuspidatus
thomasi, Calliphora vomitoria, as well as an entirely different group of invertebrates
(namely zooplankton). Based on data collected for these predators, the following
functional dependence between the predator’s search rate and the prey’s density was
proposed in Hassell et al. (1977):

s(N ) = aN

N + g
, (5)

where a and g are positive constants. The parameter a is the maximally achievable
search rate, and g is the half-saturation constant, which corresponds to the prey density
at which the search rate is equal to half of the maximal value a. For all N > 0, an
increase in g leads to a decrease in s(N ). In other words, increasing g enables predators
to decrease their search rate, a featurewith important implications thatwill be discussed
later. Also note that when setting g = 0 in (5), we recover a constant search rate, as
in the Holling-type II model. We can also easily generalize the conceptual framework
used earlier to derive the formula (4), to the current context where the search rate is
dependent on the prey density N . It suffices to assume that the predator makes its speed
v dependent on N . Specifically, choosing v(N ) = vmaxN/(N + g) expresses that the
predator interpolates its speed nonlinearly between zero (when N = 0), vmax/2 (when
N = g), and vmax (when N becomes infinitely large). Replacing v by v(N ) in (4), and
s by s(N ), yields (5), when we set a = 2vmaxR. This provides us once again with a
reasonable way to parameterize the model, and let’s us determine the value of a based
on predator characteristics (vmax, R and g) which are available in the literature for
many predator species: For example, see Hirt et al. (2017) for estimates of vmax, and
Carwardine (2010) to construct estimates of R. Estimates of g for several predator
species can be found in Hassell et al. (1977) thanks to the data fitting performed there.

StartingwithHolling’s type II functional response (3), but replacing s by the expres-
sion s(N ) in (5), we obtain the following functional response:

f (N ) = aN 2

aHN 2 + N + g
(6)

The main qualitative features this functional response shares with Holling’s type II
functional response, is that it is smooth, zero when N equals zero, increasing, and still
saturates at 1/H for large prey densities. But the main qualitative difference is that its
second derivative changes sign from positive to negative at the unique inflection point
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N0. Consequently, this functional response is an example of what in the literature is
known as a Holling type III functional response.

In this paper, we perform a complete analysis of the global behavior of the model
(1)–(2) when the functional response f (N ) is given by (6), and compare it to the
classical Holling-type II model obtained when setting f (N ) = f I I (N ) in (1)–(2).
For both models, the most interesting behavior occurs when one assumes that the
systems have a steady state where both predator and prey coexist, and when K >

1/aH (respectively K > 1/sH for the Holling-type II model). In this case, both
models exhibit a dichotomy: Either the coexistence steady state is globally stable,
or it is unstable, and then the systems have a unique globally stable limit cycle. But
there are fundamental differences between the two models as well. Indeed, one of the
main features of the Holling-type II model is the so-called Paradox of Enrichment
Rosenzweig (1971). This paradox comes from the observation that for an increased
carrying capacity K for the prey (the ’enrichment’ in the paradox), the model can be
destabilized, changing its behavior from a system with a globally stable coexistence
steady state, to a system with a globally stable limit cycle. This leads to possibly
severe fluctuations in both predator and prey that may bring either species close to
extinction. For the model presented here, an increase in the carrying capacity K will at
first also lead to a similar destabilization phenomenon in some, but interestingly, not
in all cases. If the system is destabilized, predators can adaptively lower their search
rate (by increasing the model parameter g), which in turn lets the system regain its
pre-existing behavior characterized by the globally stable coexistence steady state.
Our results offer an intriguing evolutionary mechanism that may allow predator–prey
systems to cope with the dangers associated with enrichment in the prey’s resource.

2 Preliminaries

Well-posedndess of model (1)–(2) with (6) is well-known, see e.g. Freedman (1976),
but a proof is included to make this paper self-contained:

Lemma 1 All solutions of (1)–(2) with functional response (6) remain in the non-
negative orthantR2+ when initiated there, exist for all times t > 0, and remain bounded.

Proof For all B > 0, consider the triangular regions

TB = {(N , P) ∈ R
2+ | N + P ≤ B}.

We claim that TB is forward invariant for all sufficiently large B. To see this, we check
that the vector field of the system is inward-pointing on the boundary of each such TB .
For the boundary parts where N = 0 or where P = 0, this is straightforward, where
in fact it holds for all B > 0. To see why it holds when N + P = B, note that then

Ṅ + Ṗ = r N

(
1 − N

K

)
− m(B − N ) = − r

K
N 2 + (r + m)N − mB,
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which is negative for all N ≥ 0, provided that:

(r + m)2 < 4
r

K
mB.

Thus, the vector field is inward-pointing on this part of the boundary of TB , provided
that B is sufficiently large. ��

Prey-nullcline: For all N > 0, we define the prey-nulline

P = h(N ), (7)

where

h(N ) := r N
(
1 − N

K

)
f (N )

= r

a

((
1 − N

K

)
(aHN + 1) + g

(
1

N
− 1

K

))
. (8)

It is clear that for fixed K > 0, the function is smooth for all N > 0, positive for
0 < N < K , zero at N = K , and negative for N > K , and that the graph of h(N ) has
a vertical asymptote at N = 0. We need to understand better the qualitative properties
of the graph of h(N ) on the interval (0, K ], which is why we calculate the derivatives
of h(N ):

h′(N ) = r

a

(
−2

aH

K
N + aH − 1

K
− g

N 2

)
(9)

h′′(N ) = r

a

(
−2

aH

K
+ 2

g

N 3

)
(10)

h′′′(N ) = −6
rg

aN 4 < 0, for all N > 0. (11)

Case 1: K − 1/aH ≤ 0. In this case it is clear that h′ < 0 for all N > 0, and thus
h(N ) is decreasing on (0, K ].
Case 2: K − 1/aH > 0. In this case there are two possibilities: Either h′(N ) < 0 for
all N > 0, and then h(N ) is decreasing on (0, K ] as in Case 1. Or, there exist Nmin
and Nmax in the interval (0, (K − 1/aH)/2), with Nmin ≤ Nmax such that:

h′(N ) =

⎧⎪⎨
⎪⎩

< 0, if 0 < N < Nmin and if Nmax < N ≤ K

0, if N = Nmin and if N = Nmax

> 0, if Nmin < N < Nmax

(12)

When Nmin = Nmax, then h(N ) is decreasing on (0, K ]. But when Nmin < Nmax, the
function h(N ) has a unique local minimum at N = Nmin, and a unique local maximum
at N = Nmax in the interval (0, K ]. Furthermore, h(N ) is decreasing on (0, Nmin)

and on (Nmax, K ), but increasing on (Nmin, Nmax), and has a unique inflection point
at N = Ni , where:

Nmin < Ni < Nmax, and N 3
i = Kg

aH
, (13)
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(a) (b)

Fig. 1 Graph of the prey nullcline P = h(N ) of system (1)–(2) with (6). Parameter values: r = a = H = 1,
and a K = 2, and g = 1/2, b K = 7, and g = 1/7

and where h′′(N ) switches from positive to negative when crossing N = Ni .
In summary, the function h(N ) is either decreasing on (0, K ], or it is not. In the latter

case, h(N ) has exactly two critical points for N in (0, K ] (one is a local minimum,
the other a local maximum for h), and a unique inflection point located between the
two critical points. Both possibilities of Case 2 are illustrated in Fig. 1.

Predator nullclineThe predator nullcline is determined by the equation f (N ) = m,
where f (N ) is given by (6). Since f is increasing, the equation f (N ) = m has a
unique positive solution at N = N∗ if and only if m < 1/H . For convenience we
define N∗ = +∞ if m ≥ 1/H . Note that when N∗ < +∞, the predator nullcline is
given by the vertical line N = N∗ in the phase plane R2+ of the system.

From the qualitative behavior of the prey and predator nullclines follows that the
model has a unique coexistence steady state E∗ = (N∗, P∗)with P∗ = h(N∗), if and
only if:

N∗ < K . (14)

We shall first consider the less interesting case when model (1)–(2) with (6) has no
coexistence steady state, or equivalently, when N∗ ≥ K . The proof is omitted since it
is easily obtained using standard phase plane arguments.

Theorem 1 Assume that N∗ ≥ K. Then system (1)–(2) with (6) has two steady states
E0 = (0, 0) and E1 = (K , 0). All solutions with initial condition (N0, P0) such that
N0 = 0, converge to E0 at t → +∞. All solutions with initial condition (N0, P0)
such that N0 > 0, converge to E1 as t → +∞. In particular, the predator always
goes extinct.

This result is not surprising: It says that if the predator’s break-even density N∗ equals
or exceeds the prey’s carrying capacity, then the predator is doomed.

Next, we turn to a more interesting scenario where the model has a unique coexis-
tence steady state E∗ = (N∗, P∗), but where the prey-nullcline is assumed to decrease
on (0, K ]. The following result can be proved using the method proposed in Harri-
son (1979) which is based on the construction of a Lyapunov function. It can also be
proved using elementary qualitative phase plane analysis arguments.
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Theorem 2 Assume that N∗ < K, and that h(N ) is decreasing for N in (0, K ]. Then
system (1)–(2) with (6) has three steady states E0 = (0, 0), E1 = (K , 0) and a
coexistence steady state E∗ = (N∗, P∗). All solutions with initial condition (N0, P0)
such that N0 = 0, converge to E0 at t → +∞. All solutions with initial condition
(N0, P0) such that N0 > 0 and P0 = 0, converge to E1 as t → +∞. All solutions with
initial condition (N0, P0) such that N0 > 0 and P0 > 0, converge to E∗ as t → +∞.

Theorems 1 and 2 leave us with one last case to consider, namely when a unique
coexistence steady state E∗ = (N∗, P∗) with N∗ < K exists, and when the graph
of the prey-nullcline h(N ) is not decreasing for N in (0, K ), and instead has a local
minimum and a local maximum with a unique inflection point sandwiched between
the two critical points. The next Section will be devoted to the analysis of this case, but
before we proceed, we discuss a key property regarding the location of the inflection
point Ni of the non-monotone function h(N ), and the unique inflection point N0 of
the function f (N ):

Lemma 2 Assume that h(N ) is non-monotone for N in (0, K ], and let Ni be the unique
inflection point of h(N ) for N in (0, K ], and N0 be the unique inflection point of f (N )

for N ≥ 0, respectively. Then

N0 < Ni , and thus

f ′′(N ) < 0 for all N ≥ Ni . (15)

Proof Let’s first locate the inflection point of f (N ):

f ′(N ) = aN (N + 2g)

(aHN 2 + N + g)2
, (16)

f ′′(N ) = 2a
(N + g)(aHN 2 + N + g) − (N 2 + 2gN )(2aHN + 1)

(aHN 2 + N + g)3

= 2a
−aHN 3 − 3gaHN 2 + g2

(aHN 2 + N + g)3
=: 2a G(N )

(aHN 2 + N + g)3
(17)

Thus, since G ′(N ) < 0 for all N > 0, and G(0) > 0, there exists a unique N0 > 0
such that G(N0) = f ′′(N0) = 0. Moreover, f ′′(N ) > 0 ( f ′′(N ) < 0) for all N <

N0 (N > N0).
By assumption, h(N ) is non-monotone in (0, K ], hence there exist Nmin and Nmax

in (0, K ] with Nmin < Nmax, such that h′(Nmin) = h′(Nmax) = 0. Then there exists
Ni in (Nmin, Nmax) such that h′′(Ni ) = 0, and from (12) it follows that h′(Ni ) > 0.
From (10) we see that Ni is uniquely determined by:

N 3
i = Kg

aH
, (18)

Then h′(Ni ) > 0, is equivalent to:

−2
aH

K
Ni + ah − 1

K
− g

N 2
i

> 0 ⇔ aHN 2
i > 2

aH

K
N 3
i + g + N 2

i

K
,
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and using (18) this implies that:

aHN 2
i > 3g + N 2

i

K
. (19)

Our goal is to show that N0 < Ni , or equivalently that G(Ni ) < 0. It holds that:

G(Ni ) = −aHN 3
i − 3gaHN 2

i + g2

= −aHN 3
i + g(g − 3aHN 2

i )

< −aHN 3
i + g

(
−8g − 3N 2

i

K

)
, by (19)

< 0,

which concludes the proof. ��

3 Dichotomy

We now investigate the most interesting case, which occurs when the system has a
unique coexistence steady state E∗ = (N∗, P∗), and when the prey nullcline P =
h(N ) is not decreasing for N in (0, K ]. We have seen before that in this case the prey
nullcline has two critical points for N in (0, K ], namely a local minimum at N = Nmin
and a local maximum at N = Nmax, with a unique inflection point at N = Ni , where
Nmin < Ni < Nmax.

Recall that the predator nullcline is given by the vertical line N = N∗. Depending
on the location of N∗ in comparison to the critical points Nmin and Nmax of the prey
nullcline P = h(N ), we will see that the system displays two distinct dynamical
behaviors. When 0 < N∗ < Nmin, or when Nmax < N∗ < K , the system has a
unique, globally stable steady state. This case will be discussed in Sect. 3.1. When
Nmin < N∗ < Nmax, the system displays a unique, globally stable limit cycle. This
case will be shown in Sect. 3.2.

3.1 Globally stable coexistence steady state E∗

Our first main result is the following, and it will be proved using a variation of a
technique first developed in Seo and Wolkowicz (2018).

Theorem 3 Assume that N∗ < K, and that h(N ) has a local minimum at N = Nmin
and a local maximum at Nmax, where 0 < Nmin < Nmax < K. Furthermore, assume
that either

Nmax < N∗, (20)

or that
N∗ < Nmin. (21)
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Then system (1)–(2) with (6) has three steady states E0 = (0, 0), E1 = (K , 0) and a
coexistence steady state E∗ = (N∗, P∗). All solutions with initial condition (N0, P0)
such that N0 = 0, converge to E0 at t → +∞. All solutions with initial condition
(N0, P0) such that N0 > 0 and P0 = 0, converge to E1 as t → +∞. All solutions with
initial condition (N0, P0) such that N0 > 0 and P0 > 0, converge to E∗ as t → +∞.

Proof Before we start the proof, we must introduce some new notation. Recall that
we defined N∗ as the solution to the equation f (N ) = m. However, with that nota-
tion, m is asumed to be fixed, but later in this proof we shall need to treat m as a
variable parameter. Thus, we redefine m as m∗. In other words, in this proof, N∗ will
denote the unique solution to the equation f (N ) = m∗. Now, fixing all parameters
r , K , a, h and g, but treatingm as a variable parameter, the implicit function Theorem
implies that N∗(m) (the unique solution of f (N ) = m) is a smooth map which is
increasing on its domain (0, 1/H). It is easy to show that limm→0+ N∗(m) = 0, and
limm→1/H N∗(m) = +∞, which implies that the map N∗(m) is onto (0,+∞).

We now turn to the proof of Theorem 3. At first, we can apply the same reasoning
as in the proof of Theorem 2, up to the point where the Bendixson-Dulac criterion
is invoked to rule out the existence of nontrivial periodic solutions in the open strip
S = {(N , P) | 0 < N < K , and P > 0}. Since h(N ) is no longer decreasing for
N in (0, K ], the scaling function 1/(P f (N )) for the vector field used in the proof
of Theorem 2 is no longer appropriate. Instead, we shall consider a different scaling
function here, namely Pα−1/ f (N ), where the constant α will be determined later.
Scaling the vector field in (1)–(2) (butwherem is replaced bym∗, for reasons discussed
earlier) by this function, and then taking the divergence, yields:

Pα

(
h′(N ) + α

(
f (N ) − m∗

f (N )

))
(22)

Our goal is to show that there exists some α such that this divergence has fixed sign
in the strip S.

For all m in (0, 1/H), we define the following function for all N in (0, K ] with
N �= N∗(m):

α(N ,m) = − f (N )h′(N )

f (N ) − m

Case 1: Nmax < N∗. Recall that N∗(m) is onto (0,+∞), and thus there existsmmax <

m∗ such that N∗(mmax) = Nmax. We wish to investigate the graph of the function
α(N ,mmax), and claim that:

1. α(N ,mmax) is continuous for N in [0, K ], and

lim
N→0+ α(N ,mmax) = − r

mmax
, and lim

N→Nmax
α(N ,mmax) =: α∗ > 0.

2. α(N ,mmax) is increasing on [0, K ].
3. For m∗ > mmax, the graph of α(N ,mmax) lies above the graph of α(N ,m∗) for

N in (Nmin, Nmax), but below it for N in (N∗, K ], see Fig. 2.
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Fig. 2 Graph of α(N ,m∗) (blue)
and α(N ,mmax) (gold).
Parameter values:
r = a = H = 1, K = 7,
g = 1/7, m∗ = 0.8294 (and
N∗ = 5), mmax = 0.7373 (and
Nmax = 2.9422) (color figure
online)

Items 1, 2 and 3, together with the fact that α(N ,m∗) ≤ 0 when N belongs to
(0, Nmin] or to [Nmax, N∗), and the fact that α∗ defined in item 1 above is positive,
imply that the divergence of the scaled vector field in (22) is negative in the strip
{(N , P) | 0 < N < K , P > 0} when we set α = α∗.

Proofs of the 3 items above:

1. We calculate:

lim
N→0+ α(N ,mmax)

= 1

mmax
lim

N→0+
aN 2

aHN 2 + N + g
.
r

a

(
−2

aH

K
N +

(
aH − 1

K

)
− g

N 2

)

= r

mmax
lim

N→0+
1

aHN 2 + N + g
.

(
−2

aH

K
N 3 +

(
aH − 1

K

)
N 2 − g

)

= − r

mmax

By de L’Hôpital’s rule:

lim
N→Nmax

α(N ,mmax) = lim
N→Nmax

− f ′h′ − f h′′

f ′ = lim
N→N∗

− f h′′

f ′ =: α∗ > 0

Continuity of α(N ,mmax) is now obvious.
2. After simplification, and using the specific expression (6) of the functional f (N ),

we have that for N > 0, the partial derivative of α with respect to N is given by:

α′(N ,mmax) = mmax f ′h′ − f h′′( f − mmax)

( f − mmax)2

= r

( f − mmax)2(aHN 2 + N + g)2
g(N ), (23)

where

G(N ) = 2
aH

K
a (1 − mmaxH) N 4 − 4mmax

aH

K
N 3

+
(

−6mmaxg
aH

K
+ mmax

(
aH − 1

K

))
N 2
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+2g

(
mmax

(
aH − 1

K

)
− a(1 − mmaxH)

)
N + mmaxg (24)

We wish to show that this function is zero for N = Nmax, and positive for any
N �= Nmax in the interval (0, K ]. From this, the desired result follows.
First, we claim that G(N ) has a zero of at least second order at Nmax (i.e.
G(Nmax) = G ′(Nmax) = 0). To see this, note that it follows from (23) that for
N > 0:

rG(N ) = (aHN 2 + N + g)2
(
mmax f

′h′ − f h′′( f − mmax)
)
,

from which it is clear that G(Nmax) = 0. Furthermore, taking the derivative with
respect to N , yields:

rG ′(N ) = 2(aHN 2 + N + g)(2aHN + 1)
(
mmax f

′h′ − f h′′( f − mmax)
)

+(aHN 2 + N + g)2
(
mmax f

′′h′ − ( f − mmax)(2 f
′h′′ + f h′′′)

)
,

from which also follows that G ′(Nmax) = 0.
Thus, there exist constants α, β and γ such that the 4th order polynomial G(N )

can be factored as:

G(N ) = (N − Nmax)
2(αN 2 + βN + γ )

To determine α, β and γ , we identify the above expressionwith (24), which yields:

α = 2
aH

K
a(1 − mmaxH)

β = 4
aH

K
a(1 − mmaxH)(Nmax − N∗

0 )

γ = mmaxg

(Nmax)2

where N∗
0 is the solution to the equation f (N ) = mmax but for the case where

g = 0. It is easy to see that Nmax = N∗(mmax) > N∗
0 . Since mmax belongs to

(0, 1/H), it follows that α > 0, and then also that β > 0. Finally, γ is obviously
positive as well. Consequently, G(N ) > 0 for all positive N �= Nmax.

3. Observe that for all m > 0, and as long as Nmax ≤ N∗(m):

∂α

∂m
(N ,m) = − f h′

(m − f )2

{
< 0, for N in (Nmin, Nmax)

> 0, for N in (N∗(m), K ]

From this follows the statement made in item 3.

Case 2: If N∗ < Nmin, then there exists mmin > m∗ such that N∗(mmin) = Nmin.
This time we investigate the graph of the function α(N ,mmin). We claim that:
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Fig. 3 Graph of α(N ,m∗) (blue)
and α(N ,mmin) (gold).
Parameter values:
r = a = H = 1, K = 7,
g = 1/7, m∗ = 0.1373 (and
N∗ = 1/4), mmin = 0.2504
(and Nmin = 0.442) (color
figure online)

1. α(N ,mmin) is continuous for N in [0, K ], and

lim
N→0+ α(N ,mmin) = − r

mmin
, and lim

N→Nmin
α(N ,mmin) =: α∗ < 0.

2. α(N ,mmin) is increasing on [0, K ].
3. The graph of α(N ,mmin) lies above the graph of α(N ,m∗) for N in (0, N∗), but

below it for N in (Nmin, Nmax), see Fig. 3.

The proof of these 3 items is entirely analogous to the proof given in Case 1, and
therefore omitted.

To conclude the proof in this case, we note that items 1, 2 and 3, together with the
fact that α(N ,m∗) ≥ 0 when N belongs to (N∗, Nmin) or to (Nmax, K ], and the fact
that α∗ defined in item 1 above is negative, imply that the divergence of the scaled
vector field in (22) is negative in the strip {(N , P) | 0 < N < K , P > 0} when we set
α = α∗. ��

3.2 Unique stable limit cycle

Our second main result is as follows:

Theorem 4 Assume that N∗ < K, and that h(N ) has a local minimum at N = Nmin
and a local maximum at Nmax, where 0 < Nmin < Nmax < K. Furthermore, assume
that

Nmin < N∗ < Nmax, (25)

Then the system (1)–(2) with (6) has three steady states E0 = (0, 0), E1 = (K , 0)
and a coexistence steady state E∗ = (N∗, P∗). All solutions with initial condition
(N0, P0) such that N0 = 0, converge to E0 at t → +∞. All solutions with initial
condition (N0, P0) such that N0 > 0 and P0 = 0, converge to E1 as t → +∞.
All solutions with initial condition (N0, P0) �= E∗ such that N0 > 0 and P0 > 0,
converge to the unique limit cycle as t → +∞.

Proof The existence of the 3 steady states E0, E1 and E∗ is immediate, and a lin-
earization argument shows that E0 and E1 are saddles. The Jacobian matrix at E∗
is:

J (E∗) =
(
r(1 − 2N∗/K ) − f ′(N∗)P∗ −m

P∗ f ′(N∗) 0

)
=

( m
r h

′(N∗) −m
P∗ f ′(N∗) 0

)
,
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which has positive trace, from which follows that E∗ is unstable. These linearization
arguments were already obtained in Freedman (1976). To show the existence of a
unique, stable limit cycle, we apply Theorem 4.2 in Kuang and Freedman (1988).
That result is proved under the assumption that f (N ) has a simple zero at N = 0
(i.e. f (0) = 0, and f ′(0) �= 0, see assumption (H3) in Kuang and Freedman (1988)),
which is not satisfied for the functional f (N ) in (6) used here. Indeed, the f (N ) used
here has a zero of order two at N = 0 (i.e. f (0) = f ′(0) = 0 and f ′′(0) �= 0).
However, the simplicity of the zero of f (N ) at N = 0 is never used in the proof of
Theorem 4.2 in Kuang and Freedman (1988). Finally, the main condition imposed in
Kuang and Freedman (1988) to establish the existence of a unique periodic solution,
is condition (4.18) in that paper. This condition states that a specific function, stated
below in (26), must be sign-definite for all N in [0, K ]. However, in our model, this
function is only defined for N in (0, K ] (this is due precisely to the fact that f (N ) has
a zero of order two at N = 0, as pointed out above). But again, this does not create
significant problems. Instead, it suffices to check that this function is sign-definite for
N in (0, K ], and this will suffice to establish the existence of a unique and stable limit
cycle. The condition we need to verify is as follows:

m f ′h′ − f ( f − m)h′′ ≥ 0, for all 0 < N ≤ K . (26)

To verify that his condition holds, we shall divide the interval (0, K ] into three subin-
tervals, and prove the validity of (26) on each subinterval.

1. 0 < N ≤ Ni :
For fixed parameters r , K , a, H and g, and once again treating m as a variable
parameter, the implicit function Theorem implies that N∗(m) (the unique solution
of f (N ) = m) is a smooth, increasing function defined for m in (0, 1/H). Recall
also that limm→0+ N∗(m) = 0 and limm→1/h N∗(m) = +∞, which implies that
the map N∗(m) is onto (0,+∞). Let mmin < m∗ < mmax be the 3 values of m
where the function N∗(m) equals Nmin < N∗ < Nmax, respectively.
Using the specific expression (6) for the functional f (N ), the function appearing
on the left hand side of the inequality in (26) is:

m f ′h′ − f ( f − m)h′′ = r

(aHN 2 + N + g)2
g(N ,m), (27)

where g(N ,m) was already defined in (24) (but only for the case that m = mmax)
as follows:

g(N ,m) = 2
aH

K
a(1 − mH)N 4 − 4m

aH

K
N 3 + (−6mg

aH

K
+ m(aH − 1

K
))N 2

+2g(m(aH − 1

K
) − a(1 − mH))N + mg

Our goal is to show that

g(N ,m∗) ≥ 0, for all 0 ≤ N ≤ Ni . (28)
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First, note that g(N ,m) is linear in m, and recalling (10) we can re-write g(N ,m)

as follows:

g(N ,m) =
(
2
a2H

K
N 4 − 2agN

)
+ ms(N )

= −a2

r
N 4 ∂2h

∂N 2 (N ) + ms(N ), (29)

where

s(N ) = −2
(aH)2

K
N 4 − 4

aH

K
N 3 +

(
−6g

aH

K
+ aH − 1

K

)
N 2

+2g

(
2aH − 1

K

)
N + g

We have established in item 2 of the proof of both cases of Theorem 3 that

g(N ,mmin) ≥ 0, for all N ≥ 0. (30)

Now, for every m in (0, 1/H), and N ≥ 0:

∂g

∂m
= s(N ).

Consequently, using (29) and (30), we have that for all m in (0, 1/H), and N in
[0, K ]:

∂g

∂m
= s(N ) = ∂g

∂m
(N ,mmin) ≥ a2

rmmin
N 4 ∂2h

∂N 2 (N ) (31)

But ∂2h/∂N 2(N ) ≥ 0 for N in (0, Ni ], and thus (31) and (30) imply that:

g(N ,m) ≥ 0 for all m ≥ mmin and N in (0, Ni ].

In particular, (28) holds.
2. Ni ≤ N ≤ Nmax: We distinguish 2 cases, depending on the relative location of

N∗ and Ni :
Case 1: Ni < N∗. In this case we divide the interval [Ni , Nmax] into two further
subintervals:

• Ni ≤ N ≤ N∗: To establish that (26) holds when N belongs to this interval,
we first evaluate the function in the right-endpoint N∗, and see that the function
is positive there. Next, we calculate the derivative of this function:

m f ′′h′ − ( f − m)(2 f ′h′′ + f h′′′)

By inspection it follows that this derivative is negative when N belongs to the
interval [Ni , N∗] (here, we have used Lemma 2 which implies that f ′′(N ) < 0
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when N ≥ Ni ). Consequently, the functionm f ′h′ − f ( f −m)h′′ is decreasing
on the interval [Ni , N∗], and as it is positive at the right-endpoint, the function
is positive in the entire interval.

• N∗ ≤ N ≤ Nmax: It is immediately clear that (26) holds when N belongs to
the interval [N∗, Nmax] by inspection of the signs of the various factors and
terms in the function m f ′h′ − f ( f −m)h′′, given the fact that Ni < N∗ ≤ N
when N belongs to this interval, whence h′′(N ) ≤ 0.

Case 2: N∗ ≤ Ni . In this case, (26) is easily seen to hold on the interval [Ni , Nmax],
using the same argument as in the second item of Case 1 above.

3. Nmax ≤ N ≤ K : We first evaluate the function m f ′h′ − f ( f − m)h′′ in the
left-endpoint Nmax, and see that the function is positive there. The derivative

m f ′′h′ − ( f − m)(2 f ′h′′ + f h′′′)

of this function is positive on the interval [Nmax, N∗] (here, we have used Lemma 2
which implies that f ′′(N ) < 0 when N ≥ Nmax). Consequently, the function
m f ′h′ − f ( f −m)h′′ is increasing on the interval [Nmax, K ], and as it is positive
at the left-endpoint Nmax, the function is positive in the entire interval.

��
Hopf bifurcations are supercritical: Theorems 3 and 4 suggest that when N∗ coin-

cides with either Nmin (where h(N ) achieves a local minimum), or with Nmax (where
h(N ) achieves a local maximum), then a Hopf bifurcation occurs. The Jacobianmatrix
at the coexistence steady state E∗ = (N∗, P∗) is:

J (E∗) =
( m

r h
′(N∗) −m

P∗ f ′(N∗) 0

)
,

and clearly shows that J (E∗) has a pair of purely imaginary eigenvalues when N∗ =
Nmin or N∗ = Nmax, and also reveals the switch in stability of E∗ when N∗ crosses
either Nmin or Nmax: E∗ is a stable spiral when h′(N∗) < 0, and an unstable spiral
when h′(N∗) > 0. Moreover, using N∗ as a bifurcation parameter, it is clear that the
eigenvalues of J (E∗) cross the imaginary axis transversally when N∗ crosses either
Nmin or Nmax. Indeed, the sum of both eigenvalues (which is twice the real part of
each eigenvalue) equals (m/r)h′(N∗), and the derivative with respect to N∗ of this
expression is (m/r)h′′(N∗), which is positive when N∗ = Nmin, and negative when
N∗ = Nmax. To determine the nature of the Hopf bifurcation (sub- or supercritical),
we determine the sign of the following quantity, first determined inWolkowicz (1988),
see also Seo and Wolkowicz (2018):

�(N∗) = h′′(N∗)
(
2 f ′(N∗) − f (N∗) f ′′(N∗)

f ′(N∗)

)
+ h′′′(N∗) f (N∗)

in the cases where N∗ = Nmin, and N∗ = Nmax. When �(N∗) < 0, the Hopf
bifurcation is supercritical, and when �(N∗) > 0 it is subcritical Wolkowicz (1988);
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Seo andWolkowicz (2018).Wewill see that in both cases, N∗ = Nmin and N∗ = Nmax,
the Hopf bifurcation is supercritical. Indeed, suppressing a straightforward algebraic
calculation using the derivatives (9), (10) and (11) of h(N ), and the derivatives (16)
and (17) of f (N ), yields that:

�(N∗) = − 2r f (N∗)
aN∗(N∗ + 2g)

(
2
aH

K
(N∗ + 3g) + 3g

(N∗)2

)
,

which is clearly negative when N∗ = Nmin or N∗ = Nmax. Consequently, we can
generalize the conclusion of Theorem 3, to also include the cases when N∗ = Nmin,
and N∗ = Nmax:

Corollary 1 Theorem 3 remains valid if (20) and (21) are replaced by

Nmax ≤ N∗, and N∗ ≤ Nmin,

respectively.

4 Comparison with the Holling-type II model

Here we shall compare the dynamics of the model studied in this paper, to the Holling-
type II model Holling (1959); Rosenzweig andMacArthur (1963), obtained by setting
f (N ) = f I I (N ) (see (3)) in (1)–(2). But first we offer some historical perspective.
Despite the central role of the Holling-type II model in ecology and mathematical
biology, almost 30 years has passed between its initial proposal in Holling (1959),
and a complete and rigorous analysis of its dynamics. The difficulty seems to have
been to establish the proof of uniqueness of the limit cycle, which was first announced
in Cheng (1981). According to Seo and Wolkowicz (2018) however, the proof in
Cheng (1981) contained a flaw, which was fixed later in Liou and Cheng (1988). A
concise analysis of the dynamics of the Holling-type II model can be found in [2], and
is summarized next. First, the Holling-type II model also always has the extinction
steady state E0 = (0, 0) and the prey-only steady state E1 = (K , 0), just like the
model presented here. The prey nullcline of the Holling-type II model is a segment of
a parabola, given by:

P = r

s

(
1 − N

K

)
(sHN + 1).

The maximum of the parabola is located in the interior of the positive orthant R2+ if
and only if:

K > 1/sH , (32)

and in this case this maximum occurs at:

N̄max := 1

2
(K − 1/sH) (33)

123

Author's personal copy



B. D. Dalziel et al.

The predator nullcline is a vertical line N = N∗, where N∗ is the solution of f I I (N ) =
m. Note that N∗ exists if and only if m < 1/H , a condition which is assumed to hold
henceforth. Therefore, the Holling-type II model has a unique coexistence steady
state E∗ = (N∗, P∗) if and only if P∗ := (1 − N∗/K )(sHN∗ + 1) is positive, or
equivalently when N∗ < K . The global dynamics of the Holling-type II model is
summarized next.

Theorem 5 Consider system (1)–(2) with f (N ) = f I I (N ) the Holling type II func-
tional response defined in (3). Assume that (32) holds, and that there exists a unique
coexistence steady state E∗ = (N∗, P∗), in addition to the steady states E0 = (0, 0)
and E1 = (K , 0) which always exist.
Case 1: If N̄max ≤ N∗, then E∗ is globally asymptotically stable with respect to initial
conditions (N0, P0) in the interior of R2.
Case 2: If N∗ < N̄max, then E∗ is unstable, and there exists a unique stable limit cycle
which attracts all solutions with initial conditions (N0, P0) �= E∗ in the interior of
R
2.

Comparing this to Corollary 1, we see that the global behavior of the Holling-type II
model exhibits the same dichotomy as the model investigated in this paper: Either the
coexistence steady state is globally stable; or it is not, and then a unique, globally stable
limit cycle exists. However, a significant difference is that, depending on the location of
N∗, the predator’s break-even density of prey, there is only a single threshold N̄max for
N∗ in the Holling-type II model that separates the two distinct dynamical regimes, and
the coexistence steady state is globally stable if and only if N̄max ≤ N∗. In the model
presented here, there are two thresholds Nmin and Nmax for N∗, and the globally stable
coexistence steady state occurs when N∗ ≤ Nmin, or when Nmax ≤ N∗ according to
Corollary 1. In other words, here the coexistence steady state is globally stable for all
sufficiently large, but also for all sufficiently small values of the predator’s break-even
density of prey N∗, whereas in the Rosenzweig MacArthur model this only happens
for all sufficiently large values of N∗.

We shall see in a moment that this phenomenon also has important implications in
the context of the paradox of enrichment, first pointed out for theHolling-type IImodel
in Rosenzweig (1971). Before proceeding to that discussion, we investigate how Nmin
and Nmax in themodel studied here, varywith the parameters K and g. Recall that Nmin
and Nmax are critical points for the function h(N ), and thus h′(Nmin) = h′(Nmax) = 0,
where h′(N ) is given in (9).

1. Dependence on K Fixing all model parameters, except for K , and assuming that
Nmin(K ) < Nmax(K ), it follows from implicit differentiation with respect to K
of the respective expressions h′(Nmin(K )) = 0 and h′(Nmax(K )) = 0, and using
that h′′(Nmin(K )) > 0 and h′′(Nmax(K )) < 0, that:

dNmin

dK
(K ) < 0, and

dNmax

dK
(K ) > 0.
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Moreover, taking limits for K → +∞ in h′(Nmin(K )) = 0, and in the inequality
Ni = (Kg/aH)1/3 < Nmax(K ), see (13), we obtain that:

lim
K→+∞ Nmin(K ) =

( g

aH

)1/2 =: N̄min, and lim
K→+∞ Nmax(K ) = +∞. (34)

These results capture what happens when the prey’s carrying capacity K is
increased: the gap between the two critical points of the prey nullcline widens,
and while Nmax(K ) grows unbounded, Nmin(K ) is bounded below and converges
to a positive value N̄min.

2. Dependence on g Fixing all model parameters except for g, and assuming that
Nmin(g) < Nmax(g), implicit differentiation with respect to g yields in a similar
fashion that:

dNmin

dg
(g) > 0, and

dNmax

dg
(g) < 0.

Moreover, taking limits for g → 0+ in the inequality Nmin(g) < Ni =
(Kg/aH)1/3, see (13), and in h′(Nmax(g)) = 0, we obtain that:

lim
g→0+ Nmin(g) = 0, and lim

g→0+ Nmax(g) = (K − 1/(aH))/2 =: N̄max. (35)

In other words, the gap between the critical points of the prey nullcline also grows
when g is decreased. In this case, Nmin(g) converges to zero, but Nmax(g) is
bounded above, and converges to an upper bound N̄max. Note that this bound is the
same as the single threshold defined in (33) for the Holling-type II model (when
we set a = s).

Paradox of enrichment (or lack thereof)
To see why these properties are important in the context of the paradox of enrichment,
we first review this paradox for the Holling-type II model. Suppose that initially, the
system parameters are such that (K − 1/(sH))/2 = N̄max(K ) ≤ N∗ < K . By
Theorem 5, the coexistence steady state E∗ is globally stable. If all model parameters
remain fixed, except for K , and if we assume that K is increased to a newvalue Knew >

K , such that N∗ < N̄max(Knew), then the coexistence steady state is destabilized. The
paradox of enrichment is precisely this destabilization phenomenon, illustrated in
Fig. 4.

Let us now investigate whether the paradox of enrichment also occurs for the model
presented in this paper. According to Corollary 1, there are two distinct possible initial
scenarios that correspond to having a system with a globally stable coexistence steady
state: Either Nmax(K ) ≤ N∗ < K , or 0 < N∗ ≤ Nmin(K ). In both cases we shall
determine what happens when all model parameters -except for K - remain fixed, and
when K increases to a new value Knew > K . If initially Nmax(K ) ≤ N∗ < K ,
then by (34) there exist sufficiently large Knew > K such that Nmin(Knew) < N∗ <

Nmax(Knew), which destabilizes the coexistence steady state E∗, as illustrated inFig. 5.
Similarly, if initially 0 < N∗ ≤ Nmin(K ), and if also N̄min < N∗, then there exist
sufficiently large Knew > K , such that Nmin(Knew) < N∗ < Nmax(Knew), once

123

Author's personal copy



B. D. Dalziel et al.

Fig. 4 Paradox of enrichment in the Holling-type II model with r = s = H = 1 and m = 3/4: (left panel)
E∗ is globally stable (K = 5). (Right panel) E∗ is unstable and there is a unique globally stable limit cycle
(Knew = 12)

Fig. 5 Paradox of enrichment in model (1)–(2) with (6) with parameters r = a = H = 1, g = 1/7 and
m∗ = 0.7708 (N∗ = 3.5): (left panel) E∗ is globally stable (K = 7). (Right panel) E∗ is unstable and
there is a unique globally stable limit cycle (Knew = 12)

Fig. 6 No paradox of enrichment in model (1)–(2) with (6) with parameters r = a = H = 1, g = 1/15 and
m∗ = 0.0941 (N∗ = 0.15): (left panel) E∗ is globally stable when K = 3. (Right panel) E∗ is globally
stable for all Knew > K (depicted is Knew = 5)

again destabilizing the coexistence steady state E∗. However, if initially 0 < N∗ ≤
Nmin(K ), and N∗ ≤ N̄min, then there are no Knew > K that can destabilize E∗, as
illustrated in Fig. 6. This follows from (34) because N∗ ≤ N̄min < Nmin(Knew), for
all Knew > K . In other words, in this last case, the paradox of enrichment does not
occur for the model studied here, which is a striking difference with the Holling-type
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Fig. 7 Decreased search rate (or increased g) stabilizes model (1)–(2) with (6) with parameters r = a =
H = 1, K = 5: (left panel) E∗ is unstable when g = 1/15 and m∗ = 0.4839 (N∗ = 1). (Right panel) E∗
is globally stable for gnew = 0.75 and m∗ = 0.3636 (N∗ = 1)

II model, where the paradox of enrichment always occurs. The role of N̄min, defined
in (34), is that it serves as a buffer: When initially N∗ ≤ N̄min, the system cannot be
destabilized by any enrichment event in the prey’s carrying capacity.

Stabilizing effect when predators decrease their search rate
We shall now discuss an important feature of the model studied here that is absent
from the Holling-type II model. Suppose that the system parameters are initially such
that the coexistence steady state is unstable, and that a unique globally stable limit
cycle exists. This may be the result of an enrichment event for the prey’s carrying
capacity K as described above. Our goal is to show that the predator can respond to
this by modifying its behavior in a way that stabilizes the coexistence steady state.
To achieve this, the predator should simply increase the value of g. Recall that this
corresponds to a decrease in its search rate s(N ) in (5), for every N > 0. To see why
this happens, assume that all parameters except for g are fixed, and that g will be
increased to gnew > g.

Thus, we assume that initially Nmin(g) < N∗ < Nmax(g), implying that E∗ is
unstable and that the system has a unique globally stable limit cycle by Theorem 4.
If gnew is chosen sufficiently large, then we can ensure that h′(N ) < 0 for all N in
(0, K ], effectively making the prey nullcline decreasing in N , as illustrated in Fig. 7. It
follows from Theorem 3, that in this case E∗ is globally stable, which establishes our
claim. We can get a better idea of how quickly this happens by considering (35). By
increasing g, the gap between Nmin(g) and Nmax(g) shrinks, and both move towards
N∗. Global stability of E∗ will occur for the first time, when either Nmin(g) or Nmax(g)
collides with N∗ (by Corollary 1).

Destabilizing effect (or lack thereof) when predators increase their search rate
To conclude we will demonstrate how an increased predator’s search rate s(N ), real-
ized by decreasing the parameter g, may destabilize a globally stable coexistence
steady state in certain cases, but not in all cases in the model investigated in this
paper. The mechanism turns out to be similar to how the paradox of enrichment
following an enrichment event in the prey’s carrying capacity can sometimes be
avoided, as described above. Suppose that initially, g is such that E∗ is globally
stable. According to Corollary 1, this means that either 0 < N∗ ≤ Nmin(g), or
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Nmax(g) ≤ N∗ < K . If 0 < N∗ ≤ Nmin(g), it follows from (35), there exist
sufficiently small gnew such that Nmin(gnew) < N∗ < Nmax(gnew), effectively desta-
bilizing E∗. If Nmax(g) ≤ N∗ < K , and if also N∗ < N̄max, then there exist
sufficiently small gnew such that Nmin(gnew) < N∗ < Nmax(gnew) < N̄max, which
again destabilizes E∗. But if Nmax(g) ≤ N∗ < K , and if also N̄max ≤ N∗, then no
matter how small gnew is chosen, (35) implies that Nmax(gnew) < N̄max ≤ N∗, and
then E∗ remains globally stable. Thus, whenever N̄max ≤ N∗, there are no limits to
increases in the predator’s search rate s(N ) that can destabilize the system. The bound
N̄max in (35) also serves as a buffer for the predator’s break-even prey density N∗,
in the sense that if N∗ is larger than N̄max, destabilization cannot occur following an
increase in the predator’s search rate.

As a final comment, we point out that N̄max corresponds to the prey density where
the parabola of the prey nullcline in the Holling-type II model achieves its maximum
(when setting a = s). This is not surprising, because taking g → 0 in ourmodel, yields
the Holling-type II model, and when N∗ is to the right of this maximum, Theorem 5
implies that E∗ is globally stable.

5 Conclusions

Holling-type II’s predator–prey model employs a Holling type II functional response
which is predicated on the assumption that the predator’s search rate is constant, and
independent of the prey density. It seems plausible however that predators can modify
their search rate, and instead adapt it based on the prey’s density. The goal of this
paper was to examine the implications on the model behavior when replacing the
constant search rate in the Holling-type II model by a density-dependent search rate
s(N ) = aN/(N +g), which effectively leads to a Holling type III functional response
in the model instead. The following summarizes our findings:

1. We provided a complete global analysis of the dynamics of the model, showing
that just like the Holling-type II model, the model investigated here exhibits a
dichotomy: Either the coexistence steady state is globally stable; or, it is unstable,
and then a unique globally stable limit cycle exists (Theorems 3, 4 andCorollary 1).

2. Whereas there is a single threshold N̄max for the predator’s break-even prey density
N∗, that determines which of the two possible regimes occurs in the Holling-type
II model, the model presented here can have two thresholds, Nmin and Nmax, with
Nmin < Nmax. If the predator’s break-even prey density N∗ is such that either
N∗ ≤ Nmin, or if Nmax ≤ N∗, then the model has a globally stable coexistence
steady state. When N∗ is sandwiched between Nmin and Nmax, there is a unique,
globally stable limit cycle.

3. Whereas the Holling-type II model always exhibits the paradox of enrichment,
a destabilization phenomenon that occurs for all sufficiently strong enrichment
events in the prey’s carrying capacity K , this is not always the case for the model
presented here. We identified a threshold N̄min = (g/aH)1/2, such that if N∗ ≤
N̄min, the model can never be destabilized following an enrichment of the prey’s
carrying capacity.
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4. In those cases where the model studied here, does exhibit destabilization follow-
ing enrichment in the prey’s carrying capacity, the predator can adapt by lowering
its search rate, and then the system can always be stabilized again, provided the
reduction in the predator’s search rate is large enough. This offers an intrigu-
ing evolutionary explanation for how predators may have evolved to respond to
enrichment events experienced by the prey.

Other mechanisms that can stabilize predator–prey dynamics have been proposed,
that rely on certain hypothesizedmovement patterns of predators and/or prey.Discrete-
time, nonlinear host-parasitoid models with aggregation of parasitoids, and where
parasitoid aggregation may or may not depend on prey density, were investigated in
May (1978) and generalized in Chesson and Murdoch (1986). A continuous-time,
2-patch predator–prey system with a diffusive predator but static prey was considered
in Jansen (2001). For a more recent review of predator–prey models that incorporate
movement of predators and/or prey, as well as spatial heterogeneities in the environ-
ment, see Briggs and Hoopes (2004). Most of these models are quite complicated
due to the fact that explicit decisions have to be made about how the two species
move, and because there is a large number of possible scenarios to choose from in
this context. Some of these choices are targeted to capture the movement patterns of
predators and prey for very specific systems, which may not apply more generally. In
contrast, the model presented here neglects explicit spatial effects. Consequently, no
decisions on how the two species move have to be made at any stage in the model-
ing process. Despite the hypothesis of a well-mixed environment, our results indicate
that a very simple mechanism (namely, the biologically reasonable assumption that
predators adapt their search rate based on the perceived prey density) always exhibits
stabilizing effects on the predator–prey dynamics.

Obtaining global stability results for the coexistence steady state in predator–prey
models has been, and continues to be, the subject of intense research. In Feng and Zen
(2000) for instance, the following functional response is considered:

f (N ) = mN 2

(A + N )(B + N )
,

and some partial global stability results are obtained using Lyapunov functions. For
existence and uniqueness of stable limit cycles, or for global stability in predator–prey
models with specific sigmoidal functional response of the type:

f (N ) = aNn

bn + Nn
,

where a and b are positive, and n > 1, we refer to Sugie et al. (1997) and Cheng et al.
(1981); Ma et al. (2017) respectively.

To conclude this paper, we point out that the choice of the search rate s(N ) =
aN/(N +g) employed here, is very specific. It would be reasonable to ask how robust
our conclusions are with respect to changes in this functional s(N ). Further research
will be needed to answer this question. To caution against unwarranted optimism, we
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refer to the recent intriguing results in Seo and Wolkowicz (2018), where the dynam-
ics of three predator–prey models with distinct functional responses was considered.
All three functional responses qualitatively resembled the Holling type II functional
response of the Holling-type II model in the sense that f (N ) was assumed to be
smooth, zero at N = 0, increasing but bounded above, and concave (i.e. f ′′(N ) < 0
for all N > 0). Based on these common features of the functional responses, it would
be reasonable to expect that these models would exhibit the same, or at least similar
behavior as the Holling-type II model. Surprisingly, it was shown in Seo andWolkow-
icz (2018) that this is not the case. One of the models could have two limit cycles,
one stable and the other unstable, surrounding a stable coexistence steady state. This
implies that this model is bi-stable, with one attractor being a steady state, and another
being a stable limit cycle. It is therefore remarkable that the model presented here,
which employs a specific example of a Holling type III functional response f (N ) that
transitions from being convex to concave for increasing values of N , cannot exhibit
more complicated behavior than the original Holling-type II model.
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