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Abstract
Aim: Understanding how spatial scale of study affects observed dispersal patterns 
can provide insights to spatiotemporal population dynamics, particularly in systems 
with significant long-distance dispersal (LDD). We aimed to investigate the dispersal 
gradients of two rusts of wheat with spores of similar size, mass and shape, over 
multiple spatial scales. We hypothesized that a single dispersal kernel could fit the 
dispersal from all spatial scales well, and that it would be possible to obtain similar re‐
sults in spatiotemporal increase of disease when modelling based on differing scales.
Location: Central Oregon and St. Croix Island.
Taxa: Puccinia striiformis f. sp. tritici, Puccinia graminis f. sp. tritici, Triticum aestivum.
Methods: We compared empirically derived primary disease gradients of cereal rust 
across three spatial scales: local (inoculum source and sampling unit = 0.0254 m, spa‐
tial extent = 1.52 m) field-wide (inoculum source = 1.52 m, sampling unit = 0.305 m 
and spatial extent = 91.4 m) and regional (inoculum source and sampling unit = 152 m, 
spatial extent = 10.5 km). We then examined whether disease spread in spatially 
explicit simulations depended upon the scale at which data were collected by con‐
structing a compartmental time-step model.
Results: The three data sets could be fit well by a single power law dispersal kernel. 
Simulating epidemic spread at different spatial resolutions resulted in similar patterns 
of spatiotemporal spread. Dispersal kernel data obtained at one spatial scale can be 
used to represent spatiotemporal disease spread at a larger spatial scale.
Main Conclusions: Organisms spread by aerially dispersed small propagules that 
exhibit LDD may follow similar dispersal patterns over a several hundred- or thou‐
sand-fold expanse of spatial scale. Given that the primary mechanisms driving aerial 
dispersal remains constant, it may be possible to extrapolate across scales when em‐
pirical data are unavailable at a scale of interest.
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1  | INTRODUC TION

Scaling, in ecology, is the study of how components or processes 
of an ecosystem change with another variable (Storch, Marquet, 

& Brown, 2007). Spatial scaling is the set of changes in ecosys‐
tems as a function of the grain or resolution, and the extent of 
distances being considered (Turner, O'Neill, Gardner, & Milne, 
1989). Spatial scaling has been shown to cause significant changes 
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in many ecological dynamics, including the relationship of spe‐
cies diversity to productivity (Chase & Leibold, 2002), popula‐
tion synchrony (Lande, Engen, Sæther, & Fahrig, 1999; Liebhold, 
Koenig, & Bjørnstad, 2004; Mortelliti, Westgate, Stein, Wood, 
& Lindenmayer, 2015) and reproduction potential (Mikaberidze, 
Mundt, & Bonhoeffer, 2014). There has been growing interest 
in how dispersal varies across multiple spatial scales (Bullock & 
Nathan, 2008; Cadotte & Fukami, 2005; Mundt, Sackett, Wallace, 
Cowger, & Dudley, 2009a).

Dispersal of organisms or their propagules is an important com‐
ponent of spatial ecology and epidemiology and can have great im‐
pact on population dynamics (Hassell, 2000), in that dispersal can 
allow species to use spatially disparate resources (Gilbert, 2012), 
to invade new locations (Clark, Lewis, & Horvath, 2001) and to 
genetically diversify (Ibrahim, Nichols, & Hewitt, 1996). Mode of 
dispersal can interact with environmental heterogeneity to influ‐
ence species co-occurrence (Heino, 2013). The dispersal gradients 
of organisms with differing modes of dispersal can be best fit by 
differing functions, for example, with rain-splash dispersed prop‐
agules more often being better fit by exponential distributions, 
and aerially dispersed propagules more often being better fit by 
inverse-power distributions (Fitt, Gregory†, Todd, McCartney, & 
Macdonald, 1987). Aerial dispersal of small particles has been de‐
scribed by fat-tailed distributions, often in the form of an inverse 
power or modified inverse power distribution (Bullock & Clarke, 
2000; Devaux, Lavigne, Austerlitz, & Klein, 2006; Reynolds, 2011). 
Given recent advancements in computational power, probability 
density functions (PDFs) have been increasingly used to describe 
dispersal kernels—the set of random draws following a given prob‐
ability density function describing the proportion of total dispersal 
at a given distance from a source (Holland, 2010). Unlike fitting the 
inverse power distribution, these PDFs do not require log-trans‐
formation, making them useful in handling data sets containing 
many zeros, as is expected with count data in the tails of dispersal 
gradients. Changes in the shape of the dispersal kernel can have 
significant changes in the speed and rate of acceleration of the 
population changes of invading organisms such as plant pathogens 
(Kot, Lewis, Driessche, & den., 1996).

Many organisms are aerially dispersed passively by wind 
(Bullock & Clarke, 2000; Okubo & Levin, 1989; Rieux et al., 2014). 
The spatiotemporal dynamics of their populations are greatly af‐
fected by the physical processes of air movement, most notably 
wind speed, direction and turbulence (Aylor, 1990; Novak, Warland, 
Orchansky, Ketler, & Green, 2000; Shaw, Harwood, Wilkinson, & 
Elliott, 2006), as well as physical attributes of the particles being 
dispersed, such as their size, mass and surface roughness (Petroff, 
Mailliat, Amielh, & Anselmet, 2008), which are in turn affected by 
landscape and plant architecture (Bohrer, Katul, Nathan, Walko, & 
Avissar, 2008; Costes, Lauri, Simon, & Andrieu, 2013; Damschen 
et al., 2014). The complexity of these interacting factors has made 
direct study challenging. However, examining resulting infections 
can act as a good proxy for dispersal (Madden, Hughes, & Bosch, 
2007; Peay, Schubert, Nguyen, & Bruns, 2012). Examining how 

wind-dispersed organisms spread across spatial scales can im‐
prove our understanding of their populations, and the likelihood 
of introductions into new regions, which could be of importance 
for managing the spread of invasive plants or infectious diseases. 
While aerial dispersal is widely recognized as an important com‐
ponent of ecological population dynamics, measuring it has proven 
challenging due to the small physical size of many propagules, the 
large number of propagules produced by a dispersing population, 
the complexity of physical processes involved and the long dis‐
tances over which propagules can disperse (Nathan, 2001). Long-
distance dispersal (LDD) plays an important role in ecological 
processes, particularly in disease ecology (Bialozyt, Ziegenhagen, 
& Petit, 2006; Filipe et al., 2012; Mundt, Sackett, Wallace, Cowger, 
& Dudley, 2009b; Wingen, Shaw, & Brown, 2013), and changes in 
the tail of the models describing LDD lead to large changes in the 
populations they predict (Bullock & Clarke, 2000).

Most empirical dispersal studies are not able to incorporate 
the entire range of distances of dispersal, as this can be upwards 
of 500 km for aerially dispersed small propagules (Aylor, 1982). 
Additionally, local aggregation, which can be indicative of acceler‐
ating spread, requires a small spatial scale to accurately measure 
(Lannou, Soubeyrand, Frezal, & Chadœuf, 2008). Inverse power 
distributions are theoretically scale independent, in that the shape 
parameter remains unchanged across scales, with only the constant 
of proportionality changing (Gisiger, 2001; Marquet et al., 2005), po‐
tentially making it possible to fit dispersal gradients across multiple 
scales using a single function.

We used two rusts of wheat (Triticum aestivum), wheat stripe 
rust, causal agent Puccinia striiformis f. sp. tritici and stem rust, causal 
agent P. graminis f. sp. tritici, as model systems to study dispersal 
across spatial scales. The primary dispersal gradients of wind-spread 
propagules have been shown to have a great deal of similarity in 
shape (Bullock & Clarke, 2000; Chamecki, 2012; Mundt, et al., 
2009a; Mundt et al., 2009b). However, very few studies of aerial 
dispersal in the same host–pathogen system across spatial scales 
exist. The rust species used here, and many of the most problem‐
atic plant pathogens, can be dispersed long distances by wind (Aylor, 
2003). Rusts are of great economic importance on cereal crops 
worldwide (Hovmøller, Yahyaoui, Milus, & Justesen, 2008). Similar 
rust species are common in many other agroecosystems, as well as 
in natural systems such as prairies (Mitchell, Tilman, & Groth, 2002) 
and forests (Sinclair, Lyon, & Johnson, 1987). Repeatable scaling re‐
lationships, consistent with inverse power law dispersal, were found 
for stripe rust and other plant and animal diseases caused by LDD 
pathogens of divergent taxonomy and at scales ranging over five or‐
ders of spatial magnitude, from small field plots to intercontinental 
spread (Mundt & Sackett, 2012; Mundt et al., 2009b, 2013). In the 
current study, we compared the primary disease gradients of cereal 
rust across three spatial scales, with the size of the inoculum source, 
the size of sampling units and spatial extent of sampling varying in 
the ratio of 1:60:6,000. Here, we define the primary disease gradi‐
ent as the number of infections as a function of distance after one 
generation of spread from the inoculum source, or focus. We then 
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examined whether the predicted disease spread depended upon the 
scale at which data were collected to estimate dispersal kernels in 
simulations among the three sets. We used three approaches to de‐
termine whether data collected at one spatial scale could be used to 
model dispersal at a larger spatial scale. The first approach was to 
determine if the three data sets obtained over this 6,000-fold range 
of spatial scale could be fit adequately to a single dispersal kernel. 
The second approach asked whether simulating epidemic spread at 
different spatial grain sizes results in similar patterns of spatiotem‐
poral spread. Finally, we determined whether dispersal kernel data 
obtained at one spatial scale can be used to represent spatiotempo‐
ral spread disease spread at a larger spatial scale.

2  | MATERIAL S AND METHODS

2.1 | Field methods

Dispersal kernels of wheat rusts field-wide were estimated from 
disease gradients emanating from artificially inoculated sources 
in three sets of investigations at differing spatial scales: We 

compared empirically derived primary disease gradients of cereal 
rust across three spatial scales: local (inoculum source and sam‐
pling unit = 0.0254 m, spatial extent = 1.52 m) field-wide (inoculum 
source = 1.52 m, sampling unit = 0.305 m and spatial extent = 91.4 m) 
and regional (inoculum source and sampling unit = 152 m, spatial 
extent = 10.5 km) (Figure 1). These terminologies have been used 
to describe a range of spatial scales previously (Benton, Vickery, 
& Wilson, 2003; Holland, Birkett, & Southway, 2009; Rounsevell, 
Annetts, Audsley, Mayr, & Reginster, 2003), but refer generally to 
the order of single meters, tens to hundreds of meters, and thou‐
sands of meters respectively. These studies have been described 
previously in detail but are summarized below.

The local dispersal study (Farber, Medlock, & Mundt, 2017) was 
conducted in 6-m radius plots, which were thoroughly inspected 
prior to inoculation to ensure no sporulating infections. Primary dis‐
ease gradients (gradients determined after one generation of disease 
spread from the inoculated source) of stripe rust were conducted 
in 2012, 2013 and 2014 in commercial wheat fields in Jefferson 
County, OR. Standard agronomic practices for irrigated commercial 
wheat were used. The study was conducted on a wheat cultivar that 

F I G U R E  1   Diagram of the sampling intervals and extents of each dispersal study. (a) Extent of each spatial scale. (b) Detail of the local 
(Farber et al., 2017) dispersal study, extending to 1.524 m, (c) field-wide (Sackett & Mundt, 2005a) dispersal study, extending to 91.44 m, and 
(d) regional (Kingsolver et al., 1984) dispersal study, extending to 10.6 km
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is highly susceptible to stripe rust and was bordered by a resistant 
cultivar. The plots were planted in tractor passes 1.52 m wide, each 
containing seven rows 0.19 m apart. Plant spacing within rows was 
not controlled but averaged approximately 0.0254 m per plant. A 
single stripe rust lesion was established by placing a mixture of P. 
striiformis urediniospores and talc on a piece of adhesive tape, which 
was adhered to the adaxial surface of the uppermost wheat leaf. This 
plant was then covered with a white plastic bag containing approx‐
imately 30 ml of water. The bag and tape were removed approxi‐
mately 16 hr after inoculation. After 1.2–1.5 latent periods (Shrum, 
1975), the plots in which the inoculated leaf contained a sporulating 
lesion were checked again to ensure no background infection. After 
2.75–2.9 latent periods from initial inoculation (1.75–1.9 latent peri‐
ods of disease spread), the location and number of lesions on each 
of the non-senesced leaves of all plants within two crossing 3.0 m 
by 0.3 m transects centred on the inoculated plant were recorded. 
Plots used for the field-wide primary disease gradient study (Sackett 
& Mundt, 2005b) were 6.1 m wide and varied in length from 128 
to 171 m. Studies were conducted in two semi-arid, irrigated loca‐
tions in Oregon (Hermiston and Madras) and utilized the same sus‐
ceptible and resistant varieties as the local dispersal study. An area 
1.52 m × 1.52 m in each plot was sprayed with water, inoculated with 
a 1:10 mixture of P. striiformis urediniospores and talc, and covered 
overnight with plastic. As in the local dispersal study, the success 
of inoculation and lack of background infections was confirmed vi‐
sually approximately 1.2 latent periods after inoculation. After ap‐
proximately 2.5 latent periods, lesions present on a designated leaf 
of each tiller in two 0.3-m sections of plants was assessed at 0.9, 1.5, 
2.1, 3.0, 4.6, 6.1, 9.1 and 12.2 m from the centre of the focus (initial 
source location), and every 6.1 m further from the focus, assessing 
a single designated leaf position in a given field and year. While dis‐
ease severity was assessed in the upwind and downwind directions, 
only the downwind sites were included in this study.

Long-distance dispersal data unaffected by outside sources of 
inoculum are extremely difficult to acquire. However, we were able 
to use stem rust dispersal data from a regional study conducted from 
1954 to 1957 on the island of St. Croix in the United States Virgin 
Islands (Kingsolver, Peet, & Underwood, 1984); only the most com‐
plete (1956–1957) field study is used here. Although stripe rust and 
stem rust are caused by different Puccinia species, urediniospores 
are similar in size, and the epidemiology of the two diseases is very 
similar (Roelfs, 1989). Despite their respective names, each species 
can infect both leaves and stems of wheat. Near the northeast edge 
of the island, a 2.5 ha field of susceptible wheat cultivar Baart was in‐
oculated with P. graminis. The prevailing winds are from northeast to 
southwest. Downwind sites were planted with equal parts of wheat 
cultivars China and Baart. Fields were routinely checked visually, 
and once the first rust lesions appeared, 20–30 culms in all down‐
wind locations were surveyed every 2–3 days. Twenty-six days after 
the initial 2.5 ha focus was inoculated, near the end of the second 
latent period, rust was observed in the source field (distance = 0) 
and in four sites downwind at 2.73, 4.34, 6.92 and 10.6 km from 
the source. Pustules (infections) per culm were recorded in each 

field when infection levels were below 10. Disease severities (per‐
centage of maximum disease coverage) were estimated at infection 
densities above 10 pustules per culm. These disease severities were 
converted to estimated lesion counts by multiplying the severity by 
the estimated maximum number of lesions within the sampling area.

2.2 | Calculation of dispersal kernels

The modified inverse power distribution (Mundt, 1989),

in which b is the shape of the dispersal gradient, and a is the 
amount of disease at the source plus c, an off-set allowing Equation 
1 to be defined for all non-negative numbers, was fit to all dispersal 
data. C is hypothesized to be related to focus width (Aylor, 1987; 
Mundt, 1989; Mundt & Leonard, 1985). Equation 1 has been shown 
to fit aerial dispersal in relatively homogenous environments well, 
particularly relative to the exponential distribution,

(Aylor, 1987; Sackett & Mundt, 2005b). This was verified by 
fitting primary disease gradients combined across the local, field-
wide and regional scales as described below to Equation 2. As in 
previous studies (Brophy & Mundt, 1991; Sackett & Mundt, 2005a) 
we used the half-width of the inoculated focus for c, except for 
data sets incorporating individual plant data, for which intermin‐
gling of plants and plant movement in the wind results in a source 
size that is difficult to define. For these data sets, the modified in‐
verse-power regression (Equation 1) was fit by iteratively increas‐
ing the c value from Equation 1 from c = 0.01 m to 10 m by 0.01 m, 
and log10-transforming the explanatory variable and the response 
variable, then fitting them by simple linear regression. The model 
returning the highest R2 value was considered the best fit when 
that model was within an order of magnitude of the half-width of 
the source focus. c was set to the half-width in the spatiotemporal 
model (see below).

Data sets were combined to predict the number of infections re‐
sulting from a single stripe rust lesion over different scales. The local 
and field-wide data sets were combined by normalizing to the num‐
ber of lesions for the local data set at 0.914 m, the single distance 
that was common to both experiments, to account for the differing 
levels of initial inoculum in the two trials. This was done by calculat‐
ing the local/field-wide ratio for number of lesions at 0.914 m and 
multiplying this ratio with the number of lesions at each distance 
(from 0.914 m to the maximum distance) for each observation in the 
field-wide data set. Kingsolver et al. (1984) reported pustules per 
culm at low severities, and severity as a percentage at higher se‐
verities describing regional dispersal. The severities were converted 
to estimates of pustule counts, using their recommendation of 10 
pustules = 1% severity. Combining these data with the regional data 
set was more difficult, as there were no overlapping distances. We 
thus extrapolated from the local/field-wide combined gradient to 
predict the number of pustules at the closest diseased sampling 

(1)y=a∗ (x+c)−b

(2)y=a∗ e−bx
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point outside the focus for the regional data set (2.73 km). The data 
set was then joined to the others, as described above, by calculat‐
ing the extrapolated/regional pustule ratio for number of lesions at 

2.73 km and multiplying this ratio times the number of lesions at 
each distance (from 2.73 to 10.6 km) for each observation in the re‐
gional data set. A similar extrapolation/normalization was also used 

Run
Length of 
field (m)

Compartment 
size (m) m2 Na fb DMFRc P0

d

1 91.44 0.0254 (1×) 300 3,600 60 5 1

2 91.44 0.0254 (1×) 300 3,600 60 2.5 1

3 91.44 0.0254 (1×) 300 3,600 60 1 1

4 91.44 0.0254 (1×) 300 3,600 60 5 5

5 91.44 0.0254 (1×) 300 3,600 60 2.5 5

6 91.44 0.0254 (1×) 300 3,600 60 1 5

7 91.44 0.0254 (1×) 300 3,600 60 5 10

8 91.44 0.0254 (1×) 300 3,600 60 2.5 10

9 91.44 0.0254 (1×) 300 3,600 60 1 10

10 91.44 1.524 (60×) 1.8E04 60 1 5 1

11 91.44 1.524 (60×) 1.8E04 60 1 2.5 1

12 91.44 1.524 (60×) 1.8E04 60 1 1 1

13 91.44 1.524 (60×) 1.8E04 60 1 5 5

14 91.44 1.524 (60×) 1.8E04 60 1 2.5 5

15 91.44 1.524 (60×) 1.8E04 60 1 1 5

16 91.44 1.524 (60×) 1.8E04 60 1 5 10

17 91.44 1.524 (60×) 1.8E04 60 1 2.5 10

18 91.44 1.524 (60×) 1.8E04 60 1 1 10

19 10,668 1.524 (60×) 1.8E04 7,000 100 5 1

20 10,668 1.524 (60×) 1.8E04 7,000 100 2.5 1

21 10,668 1.524 (60×) 1.8E04 7,000 100 1 1

22 10,668 1.524 (60×) 1.8E04 7,000 100 5 5

23 10,668 1.524 (60×) 1.8E04 7,000 100 2.5 5

24 10,668 1.524 (60×) 1.8E04 7,000 100 1 5

25 10,668 1.524 (60×) 1.8E04 7,000 100 5 5

26 10,668 1.524 (60×) 1.8E04 7,000 100 2.5 10

27 10,668 1.524 (60×) 1.8E04 7,000 100 1 10

28 10,668 152.4 (6,000×) 1.8E06 70 1 5 1

29 10,668 152.4 (6,000×) 1.8E06 70 1 2.5 1

30 10,668 152.4 (6,000×) 1.8E06 70 1 1 1

31 10,668 152.4 (6,000×) 1.8E06 70 1 5 5

32 10,668 152.4 (6,000×) 1.8E06 70 1 2.5 5

33 10,668 152.4 (6,000×) 1.8E06 70 1 1 5

34 10,668 152.4 (6,000×) 1.8E06 70 1 5 10

35 10,668 152.4 (6,000×) 1.8E06 70 1 2.5 10

36 10,668 152.4 (6,000×) 1.8E06 70 1 1 10

All simulations were 98 days long, with a latent period and infectious period of 14 days each. 
Dispersal was governed by the normalized best-fit modified inverse-power distribution across local 
(0.0254 m), field-wide (1.524 m) and regional (152.4 m) spatial scales, y=1.26

(

x+0.14m
)−2.39.

aNumber of compartments in simulation. 
bNumber of compartments in focus containing inoculum at the start of the epidemic. 
cDaily multiplication factor, the number of effective propagules produced by a single lesion per day 
of the infectious period. 
dInitial severity within the focus expressed as a percentage. 

TA B L E  1   Summary of all cereal rust 
epidemic simulations
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for pairwise combinations of the local with the regional data set, and 
the field-wide with the regional data set.

2.3 | Modelling disease spread

We developed a modified SIR (Kermack William Ogilvy, McKendrick 
A. G., & Walker Gilbert Thomas, 1927, 1932) model, a suscepti‐
ble-latent-infectious-removed (SLIR) (Heuer, French, Jackson, & 
Mackereth, 2007; Pedrazzoli et al., 2017), which addresses similar 
processes as susceptible-exposed-infected-removed (SEIR) models 
(Cunniffe, Stutt, Bosch, & Gilligan, 2011; Gilligan & van den Bosch, 
2008; Goleniewski, 1996) to examine the spread of epidemics of aeri‐
ally dispersed pathogens over time. Ours is a deterministic time-step 
model developed in MATLAB (MATLAB Release, 2016a, 2016), The 
model is comprised of four interacting arrays representing a one-di‐
mensional field of locations x from 1 to n at all times t from 1 to T: 
p, the susceptible, uninfected fraction of each compartment; u, the 
latently infected fraction, with a latent period of l days; v, the infec‐
tious, actively sporulating fraction, with an infectious period of d days 
and w, the removed fraction, consisting of lesions which have reached 
the end of their infectious periods and therefore no longer contribute 
to the epidemic. Here, s represents the incremental day of the latent 
or infectious period. Each non-zero compartment was assumed to 
contain m sites available for infection. A factorial design of daily mul‐
tiplication factor (DMFR), defined as the number of effective spores 
produced from a single infection during a single day, and a severity of 
P0 in the focus xf at t = 0 initialized the epidemic simulations (Table 1). 
At each subsequent time t, the fraction of each compartment latently 
infected was given by the following set of equations:

for newly arising latent infections, and

for all days s from 1 to l − 1. The dispersal k from a given source xj to des‐
tination xi followed the modified inverse power function Equation 1, as a 

function of the distance from the source ||
|

xj−xi
|

|

|

|

|

|

xj−xi
|

|

|

. r0r0 denotes the 

DMFR (not to be confused with R0, the number of progeny infections 
produced by a single source infection over an entire infectious period).

The actively infectious fraction was given by the equations

and

for all days j from 1 to d − 1. The removed fraction was defined by

The healthy fraction of each compartment was all tissue not in 
one of the previous three arrays:

2.4 | Appropriateness of the dispersal kernel
To demonstrate the ability of the fitted primary dispersal gradi‐
ent to reproduce empirical data for subsequent generations of dis‐
ease spread, the Madras 2002 primary disease gradient (Sackett 
& Mundt, 2005a) was used in the SLIR model with the same ini‐
tial conditions as in the field. The SLIR model was populated by 
the dispersal kernel from the regression fit to the primary disease 
gradient

and the initial disease severity in the focus of 6.2% was derived 
from the Madras 2002 data. The value of 40.5 comes from the 
regression fit to the primary disease gradient in Sackett & Mundt, 
2005a and is the predicted disease severity at 1-c units of dis‐
tance from the centre of the source. Parameters used previously 
to model wheat stripe rust spread in (Sackett & Mundt, 2005b) 
an infectious period of 14 days, a latent period of 17 days, and an 
r0 of 5 were input to the MATLAB model, considering each com‐
partment to represent a 1.524 m (60x) block of wheat plant with 
an m of 18,000. The resulting dispersal gradients on the final day 
of the simulation were fit by the modified inverse power distribu‐
tion (Equation 1), which returned the proportion of the total ef‐
fective spores deposited within a given distance from the source. 
The primary disease gradient from the model was compared to the 
empirical primary disease gradient at each scale by an analysis of 
covariance, performing weighted generalized least squares with a 
dummy variable (Andrade & Estévez-Pérez, 2014).

2.5 | Simulating full season epidemics at different 
spatial scales

The disease gradients were modelled with resolutions and extents 
with a ratio of 1:60:6,000 representing the local, field-wide and re‐
gional scales respectively. The compartment sizes were 0.0254 m 
(referred to hereafter as 1×), representing the width of an average 
wheat plant; 1.524 m (referred to hereafter as 60×), the size of the 
focus used in the field-wide studies and 152.4 m (referred to here‐
after as 6,000×), approximately the width of the initially inoculated 
field in the regional study. Fitting Equation 1 was accomplished by 
setting the c value, which is likely related to the size of the source, to 
half the width of the focus (Aylor, 1987; Chamecki, Dufault, & Isard, 
2012; Mundt, 1989).

Two sets of epidemics were simulated across host compartments 
from a single focus to compare the local and field-wide spatial scales, 
and the field-wide and regional spatial scales. The local and regional 
spatial scales could not be directly compared due to computational 
limitations of simulating regional extent with a resolution of 1×. The 
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length of the epidemic was 98 days, with a latent period and an in‐
fectious period of 14 days each. The maximum number of infections 
m in each simulation was scaled based on 300 infections per 1× com‐
partment. A complete factorial of simulations with a range of ini‐
tial severities (P0) and daily multiplication factor rates (DMFR) were 
run comparing the 1× resolution to the 60× resolution in field-wide 
epidemics, and comparing the 60× resolution to the 6,000× resolu‐
tion in the regional epidemics (Table 1). Figures were produced with 
MATLAB and in R (R Development Core Team, 2015), including the 
ggplot2 (Wickham et al., 2013) package. Areas under the curve were 
approximated using Reimann sums on the last day of the epidemic.

In addition to the simulations governed by the best-fit nor‐
malized modified inverse power distribution combined across 
all spatial scales, full season epidemics were simulated using 

the non-normalized dispersal kernels from a single spatial scale. 
Simulations comparing dispersal over 91.44-m fields, as above, 
were run with dispersal kernels from the local data set, and from the 
field-wide data set. Simulations comparing dispersal over 10.668-km 
fields, as above, were run with dispersal kernels from the field-wide 
data set, and from the regional data set. To examine the sensitiv‐
ity of the model to changes in the shape parameter of the dispersal 
gradient, full season epidemics were simulated using a DMFR of 2.5 
and a P0 of 0.05, with a b of 1.5, 2, 2.39 and 3. Each cell was said to 
contain plant(s), so s was set to 1. A meta-analysis to compare the 
effect of resolution using the combined-scale dispersal kernel and 
each individual scale dispersal kernel was conducted. The area under 
the curve (AUCs) of full season simulations conducted using the 1× 
and the 60× resolutions with each DMFR and R0 combination was 

F I G U R E  2   Mean lesion counts of Puccinia striiformis f. sp. tritici as a function of distance from the source (non-normalized), fit by the 
modified inverse-power distribution by individual spatial scale data. (a) Local, to 1.52 m; (b) field-wide, to 91.44 m; (c) regional, to 10,668 m
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compared, as were the AUCs of full season simulations using the 60× 
and 6,000× resolutions. The ‘linearHypothesis’ function from the R 
package ‘Car’ (Fox & Weisberg, 2011) was used to compare regres‐
sion slopes to each other and to 1.

3  | RESULTS

The local and field-wide spatial scale data sets were well-fit by the 
modified inverse power distribution at the local (Figure 2a) and 
field-wide (Figure 2b) spatial scales. However, the regional data set, 
containing only four observations in the tail of the epidemic outside 
the source, was poorly fit by the best-fit c modified inverse power 
distribution, and may have been greatly influenced by an ‘outlier’ 
at 3.9 km. Therefore, the regional data set was fit by the modified 
inverse power distribution with a half-width c (Figure 2c). A hierar‐
chical analysis of regression showed that including scale as an ad‐
ditive explanatory variable or as an interaction did not significantly 
improve fit, suggesting a single function well fit all three spatial 
scales (Table 2). The normalized local, field-wide and regional data 
combined in all two-way comparisons (Figure 3a–c) were fitted well 
by the modified inverse-power distribution, as was the data set com‐
bining observations at all three spatial scales (Figure 3d); all four of 
these data sets were poorly fit by Equation 2, the exponential dis‐
tribution (Figure S1). The kernel slopes (b-values) for these primary 
disease gradients ranged from 1.91 to 2.69, and values of c were 
proportional to the size of the smallest host unit included in the re‐
gression (Figure 3 and Figure S2).

The one-dimensional SLIR model closely recreated the empirical 
disease spread data. The field-wide primary disease gradient from 
Madras 2002 was recreated using both 1× (Figure S2a) compart‐
ments and 60× compartments (Figure S2b). The model was addition‐
ally validated by simulating local and regional primary gradients with 
the input parameters from the Madras 2002 study conducted at the 
field-wide scale. The difference in slopes between the simulated pri‐
mary disease gradient and the empirically derived dispersal gradi‐
ents were not significant (local p-value: 0.14; regional p-value: 0.10).
The dispersal kernel was governed by the modified inverse-power 
distribution fit to the combined normalized data across all three spa‐
tial scales, setting c to the half-width of the compartment size, which 
when modelling by 1× compartments, was

when modelling by 1.524 m compartments, and

when using a compartment size of 6,000×.
Disease spread over time when governed by Equation 10 and 

Equation 11 was very similar over the course of seven latent periods 
when comparing compartment sizes of 1× and 60× (Figure 4, Figures 

S3–S10) across the range of initial severities and reproductive rates 
per day of the infectious period (DMFR) field-wide. This was evi‐
denced by similar AUCs (Figure 5a) out to 91.44 m. The slope of the 
regression of the AUCs of the combined-scale dispersal kernel over 
the field-wide extent (Figure 5a) did not differ significantly from 1 
(p = 0.383). All other regressions of AUC differed significantly from 
1. Additionally, the regressions of the AUCs resulting from the com‐
bined-scale dispersal kernel had significantly different slopes than 
the AUCs resulting from individual scale dispersal kernels (p < 0.05). 
This closeness of AUCs from the full season epidemic simulations 
across spatial scales also was observed in all combinations of DMFR 
and P0 using compartment sizes of 60× and 6,000× (Figure 5a, 
Figures S3–S10) to 10.6 km, governed by Equation 11 and Equation 
12. Full season disease simulations governed by Equations 10–12, 
but with b values of 1.5, 2, 2.39 and 3, resulted in very similar lev‐
els of disease after seven generations when comparing simulations 
with resolutions of 1× and 60× (Figure S11) and when comparing 
simulations with resolutions of 60× and 6,000× (Figure S12). The 
closeness of simulations using single spatial scale non-normalized 
dispersal gradients over the course of a full season of disease spread 
was shown by AUC, although this relationship was not as close as 
observed using the same normalized combined dispersal kernel as 
above (Figure 5a and b).

4 | DISCUSSION

Here, we have analysed the only data set examining aerial disper‐
sal across three spatial scales we are aware of, including one of the 
highest resolution studies of aerial dispersal close to the source, and 
a study with one of the largest extents. The unique situation pro‐
vided by these three studies of wheat rusts has demonstrated the 
similarity of dispersal kernels across a wide range of spatial scales for 
an aerially dispersed model plant pathogen. We have demonstrated 
that the primary disease gradients of cereal rust lesion counts are 
well fitted by the same modified inverse power function at the local, 
field-wide and regional scales (Figure 3). Using this combined gradi‐
ent resulted in multi-generation disease spread that was highly simi‐
lar in simulations of differing resolutions, suggesting that the effect 
of significantly reducing the resolution (60× comparing field-wide 

(10)y=0.23
(

x+0.0127m
)−2.39

,

(11)y=0.23
(

x+0.76m
)−2.39

(12)y=0.23
(

x+76.2m
)−2.39

TA B L E  2   A hierarchical analysis of regression, comparing model 
1, in which logtransformed distance was the only explanatory 
variable, to models including scale as an additive explanatory 
variable (model 2) or as an interaction (model 3)

 Res.Df RSS Df Sum of Sq F Pr(>F)

1 75 11.569     

2 73 10.67 2 0.89899 3.097 0.05134

3 71 10.305 2 0.36503 1.2575 0.29062

Model 1: log(lesions) ~ log(distance).
Model 2: log(lesions) ~ log(distance) + scale.
Model 3: log(lesions) ~ log(distance) + scale + log(distance):scale.
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simulations and 100× comparing regional simulations) per se did not 
influence simulated epidemic spread. If modellers can reduce reso‐
lution of simulations, that could increase speed of computation by 
reducing matrix size, which could, therefore, increase feasibility of 
simulating larger extents. Flexibility of resolution could better align 
dispersal models with other environmental parameters which may 
only be available at particular resolutions or spatial grains, as these 

data may be biased by misaligned resolutions (Sutton & Armsworth, 
2014; Tarasi & Peet, 2017). When kernels collected at the local scale 
were used to simulate epidemic spread at the field-wide spatial 
scale, epidemics were very similar. When using the field-wide kernel 
to predict regional spread, a linear relationship was found between 
epidemic extent, suggesting qualitatively similar patterns, although 
the rates of spread were dissimilar, with faster predicted spread in 

F I G U R E  3   Cereal rust (Puccinia 
striiformis f. sp. tritici) at the local and field 
scales, and Puccinia graminis f. sp. tritici 
at the regional scale) best-fit c modified 
inverse power distributions of combined 
field data normalized to the number 
of lesions observed or estimated at 
0.9144 m. (a) local and field data; (b) field 
and regional data; (c) local and regional 
data; (d) local, field, and regional data

F I G U R E  4   Seven generations of 
disease spread with a daily multiplication 
factor (DMFR) of 5 and an initial severity 
(P0) of 5% from (a and b) a 1.524 m focus 
across a field extending 105.16 m to the 
right of the focus, with a compartment 
size of (a) 0.0254 m and (b) 1.524 m; and 
from (c and d) a 152.4 m focus across a 
field extending 10,516 m to the right of 
the focus with a compartment size of 
(c) 1.524 m and (d) 152.4 m. Dispersal 
was governed by the normalized best-fit 
modified inverse-power distribution 
across local, field-wide and regional 
spatial scales, y=1.26

(

x+0.14m
)−2.39
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the simulations using the regional dispersal kernel, possibly owing to 
the relatively shallow slope of the dispersal gradient measured at the 
regional scale, which may be either a real effect or a random effect 
related to the low number of data points present in that study.

As noted by Lannou et al. (2008), large inoculum sources are 
required to track disease gradients at long distances, but large in‐
oculum sources make it impossible to obtain useful data at short 
distances. Our results are particularly novel in providing the poten‐
tial to aid in our ability to understand the dispersal of small, pas‐
sively wind-dispersed particles by combining data sets to provide a 
common function across a large spatial extent. We normalized our 
local and field-level data to sampling at a common distance from 
the source. As there was no common distance between field-level 
and regional-level data, the field-level data were extrapolated to the 
nearest distance from the source in the regional data set for nor‐
malization. Although not ideal, this procedure resulted in a linear 
relationship across the three data sets on the log-transformed scale 
(Figure 2).

The power law is known to be theoretically scale independent 
and has been used to model fractal phenomena in which similar 

processes are repeated across scales (Gisiger, 2001), although this 
study represents a rare empirical validation of this, particularly as it 
relates to dispersal. In systems exhibiting significant long-distance 
dispersal, disease spread has been shown to be driven by dispersal 
approximating an inverse power law, often with an exponent ap‐
proximating 2, for both plant and animal systems and over a range 
of spatial scale (Chis Ster & Ferguson, 2007; Meyer & Held, 2014; 
Mundt et al., 2009a; Pybus et al., 2012). In other cases, however, 
the spatial scale at which systems are examined can have significant 
impacts on dispersal patterns (Bowler & Benton, 2005; Nathan & 
Muller-Landau, 2000; De Roos, Mccauley, & Wilson, 1991). For ex‐
ample, Kristensen, Barro, and Schellhorn (2013) found that the in‐
sect Eretmocerus hayati exhibited dispersal which varied with spatial 
scale and that measuring or modelling its dispersal from solely a local 
scale would generate observations or predictions of significantly 
slower dispersal than if the larger spatial scales were included. The 
rationale given was the differing dominant dispersal mechanisms of 
E. hayati at differing spatial scales, in which diffusion plays a larger 
role at the local and field-wide scales, but wind-advection was the 
primary driver of dispersal at the regional scale. This may be the case 

F I G U R E  5   Area under the curve (AUC) calculated for all compartments for all combinations of daily multiplication factor (DMFR) 
and initial prevalence as a percentage (P0) at the end of latent periods 3–7. (a) 91.44-m field simulation: dispersal was governed by the 
combined (C; black points) normalized best-fit c modified inverse-power distribution across local, field-wide and regional spatial scales, 
y=1.26

(

x+0.14m
)−2.39 (slope: 1.00), and the individual spatial scale (I; white points) fixed half-width c modified inverse-power distributions, 

y=2.46
(

x+0.0127m
)−2.67 and y=8.51

(

x+0.72m
)−2.33 at the local and field-wide scales respectively (slope: 0.87). (b) 10.6-km field 

simulation: dispersal was governed by the combined (C; black points) normalized best-fit modified inverse-power distribution across local, 
field-wide, and regional spatial scales, y=1.26

(

x+0.14m
)−2.39 (slope: 1.00), and the individual spatial scale (I; white points) fixed half-width 

c modified inverse-power distributions, y=8.51
(

x+0.72m
)−2.33 and y=679.33

(

x+132.6m
)−1.91 at the field-wide and regional scales 

respectively (slope: 3.12).
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for a significant fraction of flying arthropods and may be a signif‐
icant driver of insect invasions into new regions (Compton, 2002; 
Wiktelius, 1981).

A challenge in disease ecology has been to predict the proba‐
bility of pathogen movement to long distances from small sources 
of inoculum. Use of our combined data (Figure 2) shows that, al‐
though a single uredinium could result in disease spread 10 km away, 
it would be nearly impossible to find even with extensive sampling 
procedures. Thus, a single infection might be expected to spread to 
very long distances in an extensively grown agricultural crop. In less 
extensively grown crops or in sporadic populations of native plants, 
it is possible that infection would not spread owing to stochastic 
events. Relatedly, this could predict the number of plants or the area 
over which one would need to search to find a single progeny lesion 
at a given distance from a source (Table 3), which could inform field 
managers of the likelihood of invasions into new fields or regions 
(Clark et al., 2001).

Due to computational limitations, we used a one-dimensional 
simulation of disease spread, which functioned well to recreate 
empirical observations of primary disease gradients. However, a 
spatially explicit two-dimensional model could offer significant 
improvements, particularly when compartments lack homogene‐
ity, such as could be the case with row structure or plant architec‐
ture heterogeneity (Bohrer et al., 2008; Suzuki & Sasaki, 2011) or 
anisotropic dispersal (Savage, Barbetti, Macleod, Salam, & Renton, 
2011). While the deterministic SIR model has been found to effec‐
tively estimate parameters of epidemics with large populations and 
R0s (Allen & Burgin, 2000; Maltz & Fabricious, 2016), a stochastic 
model, while significantly more computationally intensive, may 

confer advantages in its ability to capture rare events (Popinga, 
Vaughan, Stadler, & Drummond, 2015; Wilkinson, Ball, & Sharkey, 
2016). Similarly, a model in which the latent and infectious periods 
follow an exponential distribution may reduce bias relative to as‐
suming a constant rate (Lloyd, 2001). The position of the epidemic 
front is expected to increase exponentially over time for an epi‐
demic driven by power law dispersal (Madden et al., 2007; Mundt 
et al., 2009b), which was observed in our simulations.

Our results suggest dispersal across a range of spatial scales 
follows similar patterns. This is consistent with previous work with 
a diversity of plant and animal systems showing that epidemics 
caused by pathogens dispersed long distance follow similar pat‐
terns of disease spread over spatial scales exceeding five orders of 
magnitude (Mundt et al., 2009a, 2009b; Pybus et al., 2012). While 
this study provides insights into the scalability of aerial dispersal 
gradients, further studies examining the scalability at the conti‐
nental scale of distances upwards of 100 km are needed to ex‐
tend these findings. Additionally, comparisons of dispersal across 
 spatial scales of propagules with differing physical properties 
could address the applicability of these findings. Plant pathogens 
that are dispersed more locally (e.g. by splash and those restricted 
to the soil environment) would not be expected to show the same 
relationship to scale. While other ecological processes may have 
a more complex relationship to scale (Compton, 2002; Lundholm, 
2009; Martiny, Eisen, Penn, Allison, & Horner-Devine, 2011; 
Wiktelius, 1981), long-distance epidemic spread for which disper‐
sal kernels are determined primarily by simple dilution over space 
may have common and predictable patterns of spread over wide a 
range of spatial scale.

Distance (m)
Predicted lesions 
per plant

Expected number of plants 
needed to find a single 
infection

Expected m2 needed 
to find a single 
infection

0 15.4 0.0649 4.19E‐05

0.0254 10.3 0.0968 6.24E‐05

0.0508 7.34 0.136 8.79E-05

0.1 4.24 0.236 1.52E‐04

0.5 0.405 2.47 1.60E‐03

1 0.102 9.8 6.35E‐03

2 0.0225 44.5 0.0287

4 4.63E‐03 216 0.139

8 9.16E‐04 1,090 0.704

16 1.78E-05 5.620E03 3.63

32 3.42E‐05 2.93E04 18.9

64 6.53‐06 1.53E05 98.8

128 1.25E‐06 8.03E05 518

500 4.78-08 20.9E07 1.35E03

1,000 9.08‐09 1.10E08 7.10E04

2000 1.73-09 5.79E08 3.73E05

5,000 1.93‐10 5.19E09 3,35E06

10,000 3.66E‐11 27.3E10 1.76E07

TA B L E  3   Predicted wheat stripe rust 
lesions per plant after a single generation 
of disease spread emanating from a single 
source lesion, and the area over which one 
would be expected to search to encounter 
a single lesion
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