
S1 Appendix: Proof of Theorem 1

The model is:

dS

dt
(t) = D(t)(S0(t)− S)−G(E, S) (1)

dP

dt
(t) = G(E, S)− 1

γ
(X1 +X2)F (P )−D(t)P (2)

dE

dt
(t) = (1− q)X1F (P )−D(t)E (3)

dX1

dt
(t) = X1 (qF (P )−D(t)) (4)

dX2

dt
(t) = X2 (F (P )−D(t)) (5)

By scaling the state variables of system (1)− (5) as follows:

s = S

p = P

e =
E

γ

x1 =
X1

γ

x2 =
X2

γ
,

and introducing the rescaled functions

g(e, s) := G(γe, s)

f(p) := F (P ),

we obtain the following scaled model:

ds

dt
(t) = D(t)(S0(t)− s)− g(e, s) (6)

dp

dt
(t) = g(e, s)− (x1 + x2)f(p)−D(t)p (7)

de

dt
(t) = (1− q)x1f(p)−D(t)e (8)

dx1
dt

(t) = x1 (qf(p)−D(t)) (9)

dx2
dt

(t) = x2 (f(p)−D(t)) (10)
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Notice that H1, which holds for the rate functions G(E, S) and F (P ), is also
valid for the scaled rate functions g(e, s) and f(p).

The total mass of this scaled model,

m = s+ p+ e+ x1 + x2,

satisfies a linear equation:

dm

dt
(t) = D(t)(S0(t)−m), (11)

which is easily verified by adding all the equations of the scaled model. This equa-
tion, and the upper bound for S0(t) in H2 imply that the following family of compact
sets

Ωε = {(s, p, e, x1, x2) | s ≥ 0, p ≥ 0, e ≥ 0, x1 ≥ 0, x2 ≥ 0,m ≤ S̄0 + ε},

are forward invariant sets of the scaled model, for all ε ≥ 0.
The Main Result, Theorem 1, is an immediate Corollary of the following result,

which is the tragedy of the commons for the scaled model:

Theorem 1. Assume that H1 and H2 hold, and assume that the initial condition
of (6) − (10) is such that x2(0) > 0; that is, the cheater is present initially. Then
(p(t), e(t), x1(t), x2(t))→ (0, 0, 0, 0) as t→∞.

Proof
Given the initial condition, we can find an ε ≥ 0 such that the solution (s(t), p(t), e(t), x1(t), x2(t))

is contained in the compact set Ωε for all t ≥ 0. We shall present two proofs. The
first involves a (biologically nontrivial) transformation of one of the system’s vari-
ables. The second considers the ratio of cooperators and cheaters, a biologically
natural measure, and reveals that this ratio does not increase.

Proof 1: Consider the variable y2 = xq2. Then

dy2
dt

(t) = y2(qf(p)− qD(t))

Equation (9), and the above equation can be integrated:

x1(t) = x1(0) e
∫ t
0 qf(p(τ))−D(τ)dτ

y2(t) = y2(0) e
∫ t
0 qf(p(τ))−qD(τ)dτ > 0, for all t since y2(0) = xq2(0) > 0,

Dividing the first by the second equation yields:

x1(t) = y2(t)
x1(0)

y2(0)
e−(1−q)

∫ t
0 D(τ)dτ ≤ B

x1(0)

y2(0)
e−(1−q)Dt,

where we have used the lower bound for D(t), see H2, to establish the last in-
equality, and the positive bound B for y2(t) which exists because the solution, and
therefore also x2(t), is bounded. From this follows that limt→∞ x1(t) = 0, where the
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convergence is at least exponential with rate (1− q)D.
Next we consider the dynamics of the variable z = Qx1 − e, where Q = (1− q)/q:

ż = −D(t)z,

which is solvable, yielding z(t) = z(0) e−
∫ t
0 D(τ)dτ . The lower bound D for D(t) in

H2, then implies that z(t)→ 0 at a rate which is at least exponential with rate D.
This fact, together with the convergence of x1(t) to zero established above, implies
that e(t)→ 0 as well.
Next, consider the p-equation (7). There holds that for each ε̃ > 0:

dp

dt
(t) ≤ ε̃−Dp, for all sufficiently large t.

Notice that we used that g(0, s) = 0 for all s ≥ 0, and the continuity of g, see H1,
as well as H2 for the lower bound of D(t). It follows that lim supt→∞ p(t) ≤ ε̃/D,
and since ε̃ > 0 was arbitrary, there follows that p(t)→ 0.
Finally, we consider the x2-equation (10). Since p(t)→ 0 and f(0) = 0 by H1, there
holds that f(p(t)) ≤ D/2 for all t sufficiently large. Consequently,

dx2
dt

(t) ≤ −D

2
x2, for all sufficiently large t,

and thus x2(t)→ 0, concluding the proof in this case.

Proof 2: Equations (9) and (10) can be integrated:

x1(t) = x1(0) e
∫ t
0 qf(p(τ))−D(τ)dτ (12)

x2(t) = x2(0) e
∫ t
0 f(p(τ))−D(τ)dτ > 0, for all t since x2(0) > 0. (13)

Thus, the ratio r(t) = x1(t)/x2(t) is well-defined and satisfies the differential equa-
tion:

dr

dt
(t) = −(1− q)f(p)r,

which shows that the ratio does not increase. The solution of this equation is:

r(t) = r(0) e−(1−q)
∫ t
0 f(p(τ))dτ (14)

We distinguish two cases depending on the integrability of the function f(p(t)):
Case 1:

∫∞
0
f(p(τ))dτ =∞.

It follows from (14) that r(t) → 0, and hence also x1(t) → 0 because x2(t) is
bounded. Proof of convergence of e(t), p(t) and x2(t) to zero now proceeds as in
Proof 1.

Case 2:
∫∞
0
f(p(τ))dτ <∞.

It follows from (12)−(13) that both x1(t)→ 0 and x2(t)→ 0, because 0 < D ≤ D(t)
for all t, by H2. Proof of convergence of e(t) and p(t) to zero now proceeds as in
Proof 1 as well.
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