GraphingCalculator 3.5; Window 44 6 643 805; PaneDivider 182; DrawGraph 0; FontSizes 18 14 10; Slider 0 5; SliderSteps 200; SliderControlValue 126; 2D.Scale 0.025 0.25 1 1; 2D.BottomLeft -2.6875 -0.09375; 2D.Axes 0; 2D.GraphPaper 0; Text "Standing waves on a one-dimensional string. Version 0.2, 3-21-07 To do: (i) Incorporate reflection at boundaries. Define amplitude, frequency, angular frequency, and wavenumber:"; Color 2; Expr a=0.6,f=m*f_0,w=2*pi*f,l=V/f,k=2*pi/l; Text "Length of string, wavelength and frequency of fundamental mode:"; Color 7; Expr L=1,L_0=2*L,f_0=V/L_0; Text "Speed of wave and harmonic number:"; Color 8; MathPaneSlider 1; Expr V=slider([0,5,40]); MathPaneSlider 7; Expr m=slider([1,40,39]); Text "Wave moving to the right:"; Expr function(h,x)=a*sin([k*x-(w*n)]); Text "Wave moving to the left:"; Color 3; Expr function(j,x)=a*sin([k*x+w*n]); Text "Sum of wave moving to left and wave moving to right is standing wave:"; Color 2; Expr function(h,x)+function(j,x),0L; Text "Option click on slider play button to get continuous motion in one direction. Author: David A. Craig <";