Central Forces
 Quantum Calculations on a Ring

Keep in your notebook
Your group will be given one of the following abstract quantum states on a ring:

$$
\begin{array}{ll}
\Phi_{a}(\phi)=\frac{1}{\sqrt{4 \pi r_{0}}}\left(1+e^{2 i \phi}\right) & \Phi_{b}(\phi)=\frac{1}{\sqrt{4 \pi r_{0}}}\left(e^{i \phi}+e^{2 i \phi}\right) \\
\Phi_{c}(\phi)=\frac{1}{\sqrt{8 \pi r_{0}}}\left(\sqrt{3} e^{i \phi}+e^{2 i \phi}\right) & \Phi_{d}(\phi)=\frac{1}{\sqrt{4 \pi r_{0}}}\left(e^{2 i \phi}+e^{-2 i \phi}\right) \\
\Phi_{e}(\phi)=\frac{1}{\sqrt{4 \pi r_{0}}}\left(e^{2 i \phi}+e^{-3 i \phi}\right) & \Phi_{f}(\phi)=\frac{1}{\sqrt{8 \pi r_{0}}}\left(\sqrt{3} e^{2 i \phi}+e^{-2 i \phi}\right)
\end{array}
$$

1) If you measured the z-component of angular momentum, what possible values could you obtain?
2) If you measured the energy, what possible values could you obtain?
3) If you measured the z-component of angular momentum, what is the probability that you would obtain $2 \hbar$?
4) What is the expectation value of \hat{L}_{z} in this state.
by Corinne Manogue
(c)2001 Corinne A. Manogue
