
17 Motion on a Ring

To begin our study of the angular properties of the solutions of Schrödinger’s
equation, we consider the motion of a quantum particle of mass µ confined
to move on a ring of constant radius r0. As with classical orbits, let’s assume
that the ring lies in the x, y plane, so that in spherical coordinates θ =
π
2

=const. Then, since Ψ is independent of r and θ, derivatives with respect
to those variables give zero and Schrödinger’s equation reduces to

HopΨ = − h̄2

2µ

1

r2
0

∂2

∂φ2
Ψ + U(r0)Ψ = ih̄

∂Ψ

∂t
(103)

Redoing the separation of variables procedure of the last section (see
Practice Problem 1.3), and assuming that Ψ = T (t)Φ(φ) only, we obtain the
following separated ordinary differential equations

d2Φ

dφ2
= −2I

h̄2 (E − U(r0)) Φ (104)

dT

dt
= − i

h̄
ET (105)

where we have used the substitution µr2
0 = I, in which I would be the

moment of inertia of a classical particle of mass µ traveling in a ring about
the center-of-mass.

Alternatively, we could have obtained equations (104) and (105) from the
results of our original separation of variables procedure (210), (99), (101),
(102), by restricting the variables r and θ to the equator, noticing that the
functions R and P are therefore constant, and that equation (99) reduces to:

A =
2µ

h̄2 (E − U(r0)) r
2
0

and equation (101) then reduces to:

B = −2µ

h̄2 (E − U(r0)) r
2
0

Since the coefficient of Φ on the right-hand-side of (104) is a constant

√

2I

h̄2 (E − U(r0)) = constant (106)
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the solutions of the Φ equation (104), are

Φm(φ)
def
= N eimφ (107)

where

m = ±
√

2I

h̄2 (E − U(r0)) (108)

and N is a normalization constant.
There is no ”boundary” on the ring, on which we can impose bound-

ary conditions. However, there is one very important property of the wave
function that we can invoke: it must be single-valued. The variable φ is
geometrically an angle, so that φ + 2π is physically the same point as φ. If
we go once around the ring and return to our starting point, the value of the
wave function must remain the same. Therefore the solutions must satisfy
the periodicity condition Φm(φ+ 2π) = Φm(φ). This is impossible unless m
is real so that the solutions are oscillatory, i.e. E − U(r0) > 0. Furthermore,
the solutions must have the correct period, i.e.

m ∈ {0,±1,±2, . . .} (109)

The quantum numberm is called the azimuthal or magnetic quantum number.
Note that the solution permits both positive and negative values of m as well
as zero.

Solving (108) for the possible eigenvalues of energy, we obtain

Em =
h̄2

2I
m2 + U(r0) (110)

For this simplified ring problem, we can choose the potential energy U(r0)
to be zero, but we will have to remember that we should not make this
choice when we are working on the full hydrogen atom problem. There is
a degeneracy that arises in this calculation. Note that the wave functions
corresponding to +|m| and −|m| have the same energy but represent (as we
will see) different states of the motion.

As usual, we choose the normalization N in (107) so that, if the particle is
in an eigenstate, the probability of finding it somewhere on the ring is unity.

1 =

∫ 2π

0

Φ∗
m(φ) Φm(φ) r0dφ =

∫ 2π

0

N∗e−imφNeimφ r0dφ = 2πr0|N |2 (111)

⇒ N =
1√
2πr0

(112)
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This is a one-dimensional problem, just like the problem of a particle-in-
a-box which you solved in the Waves Paradigm (now in φ instead of x) and
the solutions have the same oscillatory form. Everything that you learned
in that Paradigm is immediately applicable here. As in that problem, the
energy eigenvalues are discrete because of a boundary condition. The only
difference is that the boundary condition appropriate to this problem is pe-
riodicity, since φ is a physical angle, rather than Ψ(x) = 0 at the boundaries,
appropriate to an infinite potential.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 Practice Problems

1. Show that (107) and (108) are solutions of (104).

2. Why is there a factor of r0 in the integral in (111)?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

18 ANGULAR MOMENTUM OF THE PAR-

TICLE ON A RING

Classically, a particle moving in a circle has an angular momentum perpen-
dicular to the plane of the circle, which for a ring in the x, y–plane would be
in the z direction. Since angular momentum is defined by ~L = ~r×~p, we have
Lz = xpy − ypx. To make the transition to quantum mechanics, we replace
px and py by their operator equivalents:

Lz = xpy − ypx ⇒ x
h̄

i

∂

∂y
− y

h̄

i

∂

∂x
(113)

Using a straightforward application of the chain rule (see Practice Problems,
below) to replace the Cartesian partial derivatives with their polar represen-
tations, we obtain

L̂z =
h̄

i

∂

∂φ
(114)

The effect of operating on the ring eigenfunctions with this operator is:
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h̄

i

∂

∂φ

(

1√
2π

eimφ

)

= mh̄

(

1√
2π

eimφ

)

(115)

The energy eigenfunctions Φm(φ) are thus also eigenfunctions of L̂z with
eigenvalues mh̄ . Because the Φm(φ) are eigenfunctions of both energy and
angular momentum, we can make simultaneous determinations of the eigen-
values of energy and angular momentum.

Considering the angular momentum helps us understand the degeneracy
of the eigenfunctions with respect to energy. The ±m degeneracy of the
energy eigenstates corresponds to Lz = +mh̄ and Lz = −mh̄. That is,
the two degenerate states represent particles rotating in opposite directions
around the ring.

For a classical particle rotating in a circular path in the x, y-plane, the
kinetic energy is T = 1

2
Iω2 = L2

z/2I , where I is the rotational inertia
(moment of inertia). The rotational inertia of a single particle of mass µ
moving in a circle of radius r0 is I = µr2

0. The Hamiltonian for the system
is thus

H = T + U =
L2

z

2I
+ U = − h̄2

2µr2
0

∂2

∂φ2
+ U0 (116)

It is apparent from this approach that the energy and the angular momen-
tum have simultaneous eigenvalues because they are commuting operators.
Clearly [L2

z, Lz] = 0, so that E and Lz have the same eigenfunctions. There-
fore, we see that (104) and (115) are the position-space representations of
the eigenvalue equations

Ĥ |m〉 = Em|m〉 (117)

L̂z |m〉 = h̄m |m〉 (118)

Because the Φm are simultaneous eigenstates of both Ĥ and L̂z, it is possible
to make simultaneous measurements of both the energy and the z-component
of angular momentum.

In setting up the problem of the particle on the ring, we constrained the
motion to the x, y-plane, so that the angular momentum vector is in the
z direction. However, according to quantum mechanics (yet another form
of the Heisenberg uncertainty relationships) it is not possible to know the
direction of the angular momentum vector. Our knowledge of the angular
momentum vector is limited to its length and any one component. If the
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vector lies along the z-axis, then we would know all three of its components
(the x and y components being zero). We’ll see how the three-dimensional
problem solves this contradiction.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 Practice Problems

1. Using a the chain rule for partial derivatives, show that (113) is indeed
the same as (114), thereby showing that this operator is the quantum
analogue of the z-component of angular momentum.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

19 TIME DEPENDENCE OF RING STATES

We know, from the theory of Fourier series, that we can write any initial
probability distribution, which is necessarily periodic, as a sum of the energy
eigenstates.

Φ(φ) =
∞
∑

m=−∞

cm Φm(φ) =
∞
∑

m=−∞

cm

(

1√
2π r0

eimφ

)

(119)

where, for the probability distribution to be normalized, we must have:

∞
∑

m=−∞

|cm|2 = 1 (120)

To find the time evolution of the eigenstates Φm(φ), we must solve the
t equation (105). Since, for each Φm, we have now found the value of the
constant E = Em, given by (110), we can solve (105) trivially.

T (t) = e−
i

h̄
Emt (121)

A deep theorem in the theory of partial differential equations states that if
you have found an expansion of the initial probability density in terms of the
eigenstates of the Hamiltonian, then the time evolution of that probability
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density is simply obtained by multiplying each eigenstate individually by the
appropriate time evolution.

Φ(φ, t) =
∞
∑

m=−∞

cm Φm(φ) e−
i

h̄
Emt (122)

BE CAREFUL! There are an infinite number of different values for the en-
ergy, depending on the eigenstate of the Hamiltonian. It is incorrect to
multiply the initial state (119) by a single over-all exponential time factor.
Each term in the series gets its own time evolution.

20 Motion on a Sphere

We will now relax the restriction that the mass be confined to the ring,
and instead, let it range over the surface of a sphere of radius r0. The
results of this analysis yield predictions that can be successfully compared
with experiment for molecules and nuclei that rotate more than they vibrate.
For this reason, the problem of a mass confined to a sphere is often called
the rigid rotor problem. Furthermore, the solutions that we will find for
equations (101) and (102), called spherical harmonics, will occur whenever
one solves a partial differential equation that involves spherical symmetry.

For homework, you will write down the Schrödinger equation for a particle
restricted to a sphere and use the separation of variables procedure to obtain
an equivalent set of ordinary differential equations. One of the equations you
obtain will be (102), with solutions exactly as we found them for the ring.
The other equation will be (101) with slightly different labels for the unknown
constants. So, to solve either Schrödinger’s equation for the hydrogen atom
or for a particle restricted to a sphere, we need to solve (101). This will be
the job of the next five sections.

21 Change of Variables

Since we have solved the φ equation (102) and found the possible values of
the separation constant

√
B = m ∈ {0,±1,±2, . . .}, the θ equation becomes

an eigenvalue/eigenfunction equation for the unknown separation constant
A and the unknown function P (θ).

35



(

sin θ
∂

∂θ

(

sin θ
∂

∂θ

)

− A sin2 θ −m2

)

P (θ) = 0 (123)

We start with a change of independent variable z = cos θ where z is the
usual rectangular coordinate in three-space. As θ ranges from 0 to π, z ranges
from 1 to −1. We see from Figure 4 that:

θ
1

z

1-z 2

Figure 4: Relationship between z and θ.

√
1 − z2 = sin θ (124)

Using the chain rule for partial derivatives, we have:

∂

∂θ
=
∂z

∂θ

∂

∂z
= − sin θ

∂

∂z
= −

√
1 − z2

∂

∂z
(125)

Notice, particularly, the last equality: we are trying to change variables from
θ to z, so it is important to make sure we change all the θ’s to z’s. Multiplying
by sin θ we obtain:

sin θ
∂

∂θ
= −

(

1 − z2
) ∂

∂z
(126)

Be careful finding the second derivative; it involves a product rule:

sin θ
∂

∂θ

(

sin θ
∂

∂θ

)

=
(

1 − z2
) ∂

∂z

(

(

1 − z2
) ∂

∂z

)

=
(

1 − z2
)2 ∂2

∂z2
− 2z

(

1 − z2
) ∂

∂z
(127)

Inserting (124) and (127) into (123), we obtain a standard form of the
Associated Legendre’s equation:

(

(

1 − z2
) ∂2

∂z2
− 2z

∂

∂z
− A− m2

(1 − z2)

)

P (z) = 0 (128)
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In §22 and §25, we will solve this equation. After we have found the
eigenfunctions P (z), we will substitute z = cos θ everywhere to find the
eigenfunctions of the original equation (123).

22 SERIES SOLUTIONS OF ODE’S

The simplest possible φ–dependence on the ring is, of course, Φ(φ) = constant,
which corresponds in equation (123) to m = 0. We will first find solutions
for this special case, which is known as Legendre’s equation.

(

(

1 − z2
) ∂2

∂z2
− 2z

∂

∂z
− A

)

P (z) = 0 (129)

Let’s use series methods to find a solution of (129), i.e. let’s assume that
the solution can be written as a Taylor series

P (z) =
∞
∑

n=0

an z
n (130)

and solve for the coefficients an. Then we have

dP

dz
=

∞
∑

n=0

an n z
n−1 (131)

d2P

dz2
=

∞
∑

n=0

an n(n− 1) zn−2 (132)

and then plug (130)–(132) into (129) to obtain

0 =
∞
∑

n=0

an n(n−1) zn−2−z2

∞
∑

n=0

an n(n−1) zn−2−2z
∞
∑

n=0

an n z
n−1−A

∞
∑

n=0

an z
n

(133)
In (133), the summation variable n is a dummy variable (just like a

dummy variable of integration). Therefore, in the first sum, we can shift
n→ n+ 2.

∞
∑

n=0

an n(n− 1) zn−2
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→
∞
∑

n=−2

an+2(n+ 2)(n+ 1)zn

= a−2(−2 + 2)(−2 + 1)z−2 + a−1(−1 + 2)(−1 + 1)z−1 +
∞
∑

n=0

an+2(n+ 2)(n+ 1)zn

=
∞
∑

n=0

an+2(n+ 2)(n+ 1)zn

Pay special attention to what happened to the lower limit of the sum. The
new sum would start at n = −2, but since the factor of (n + 2) in the first
term and the factor of (n+1) in the second term means that these terms are
zero and we can eliminate them from the sum. At the same time, bring any
overall factors of z into the corresponding sums. Finally, since each sum now
has a factor of zn and runs over the same range, group the sums together.

∞
∑

n=−2

an+2 (n+ 2)(n+ 1) zn −
∞
∑

n=0

an n(n− 1) zn − 2
∞
∑

n=0

an n z
n − A

∞
∑

n=0

an z
n(134)

=
∞
∑

n=0

[an+2 (n+ 2)(n+ 1) − an n(n− 1) − 2 an n− Aan] zn = 0(135)

Now comes the MAGIC part. Since (135) is true for all values of z, the
coefficient of zn for each term in the sum must separately be zero, i.e.

an+2 (n+ 2)(n+ 1) − an n(n− 1) − 2 an n− Aan = 0 (136)

and therefore we can solve for an+2 in terms of an

an+2 =
n(n+ 1) +A

(n+ 2)(n+ 1)
an (137)

By plugging successive even values of n into the recurrence relation (137)
allows us to find a2, a4, etc. in terms of the arbitrary constant a0 and suc-
cessive odd values of n allow us to find a3, a5, etc. in terms of the arbitrary
constant a1. Thus, for the second order differential equation (129) we obtain
two solutions as expected. a0 becomes the normalization constant for a solu-
tion with only even powers of z and a1 becomes the normalization constant
for a solution with only odd powers of z. For example:

a2 =
A

2
a0 (138)

38



a4 =
6 + A

12
a2 =

(

6 + A

12

)(

A

2

)

a0 etc. (139)

a3 =
2 + A

6
a1 (140)

a5 =
12 + A

20
a2 =

(

12 + A

20

)(

6 + A

12

)

a0 etc. (141)

so that

P (z) = a0

[

A

2
z0 +

(

6 + A

12

)(

A

2

)

z2 + . . .

]

(142)

+ a1

[

2 + A

6
z1 +

(

12 + A

20

)(

2 + A

6

)

z3 + . . .

]

(143)

In general, the solutions of an ordinary linear differential equation can
blow-up only where the coefficients of the equation itself are singular, in this
case at z = ±1, which correspond to the north and south poles θ = 0, π.
But there is nothing special about physics at these points, only the choice of
coordinates is special there. Therefore, we want to choose solutions of (129)
which are regular (non-infinite) at z = ±1. This is an important example of
a problem where the choice of coordinates for a partial differential equation
end up imposing boundary conditions on the ordinary differential equation
which comes from it. Therefore, the infinite series (130) could possibly blow
up at the endpoints z = ±1, but a polynomial could not. So if we choose
the special values for the separation constant A to be A = −ℓ(ℓ + 1) where
ℓ is a non-negative integer, we see from (137) that for n ≥ ℓ the coefficients
become zero and the series terminates in a polynomial. The solutions for
these special values of A are polynomials of degree ℓ, denoted Pℓ, and called
Legendre polynomials.

23 LEGENDRE POLYNOMIALS

It turns out that the Legendre polynomials can also be found from Rodrigues’
formula

Pℓ(z) =
1

2ℓℓ!

dℓ

dzℓ

(

z2 − 1
)ℓ

(144)

(The proof is lengthy, but beautiful. Ask!) Rodrigues’ Formula can be used
to generate solutions quickly. To do this, write

(

z2 − 1
)ℓ

= (z − 1)ℓ(z + 1)ℓ = aℓbℓ (145)
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and use the product rule

dℓ

dzℓ

(

z2 − 1
)ℓ

=

(

dℓaℓ

dzℓ

)

bℓ + ℓ

(

dℓ−1aℓ

dzℓ−1

)(

dbℓ

dz

)

(146)

+
ℓ(ℓ− 1)

2!

(

dℓ−2aℓ

dzℓ−2

)(

d2bℓ

dz2

)

+ ...+ aℓ

(

dℓbℓ

dzℓ

)

where the coefficient of the ith term in the product rule is the binomial
coefficient

(

ℓ

i

)

=

(

ℓ

ℓ− i

)

=
ℓ!

(ℓ− i)! i!
(147)

The first few Legendre polynomials are:

P0(z) = 1 (148)

P1(z) = z (149)

P2(z) =
1

2
(3z2 − 1) (150)

P3(z) =
1

2
(5z3 − 3z) (151)

P4(z) =
1

8
(35z4 − 30z2 + 3) (152)

P5(z) =
1

8
(63z5 − 70z3 + 15z) (153)

There are several useful patterns to the Legendre polynomials:

• The overall coefficient for each solution is conventionally chosen so that
Pℓ(1) = 1. As discussed in the next section, this is an inconvenient

convention that we are stuck with!

• Pℓ(z) is a polynomial of degree ℓ.

• Each Pℓ(z) contains only odd or only even powers of z, depending on
whether ℓ is even or odd. Therefore, each Pℓ(z) is either an even or an
odd function.

• Since the differential operator in (129) is Hermitian (unproven), we
are guaranteed by a deep theorem of mathematics that the Legendre
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polynomials are orthogonal for different values of ℓ (just as with Fourier
series) 1 , i.e.

1
∫

−1

P ∗
k (z)Pℓ(z) dz =

δkℓ

ℓ+ 1
2

(154)

The “squared norm” of Pℓ is just 1/(ℓ+ 1
2
). To normalize each Pℓ(z) it

should be multiplied by
√

ℓ+ 1
2
.

Notice that the differential equation

∂2P

∂z2
− 2z

1 − z2

∂P

∂z
+
ℓ(ℓ+ 1)

1 − z2
P = 0 (155)

is a different equation for different values of ℓ. For a given value of ℓ, you
should expect two solutions of (155). Why? We have only given one. It turns
out that the “other” solution for each value of ℓ is not regular (i.e. it blows
up) at z = ±1. In cases where the separation constant A does not have the
special value l(l + 1) for non-negative integer values of ℓ, it turns out that
both solutions blow up. We discard these irregular solutions as unphysical
for the problem we are solving.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 Practice Problems

1. Use Rodrigues’ formula, by hand, to find the first 5 Legendre polyno-
mials.

2. Go through the worksheet legendre.mws. You do not need to turn
anything in. However, there are two things you should get out of this
worksheet:

(a) Get a feel for what the Legendre polynomials look like. There are
some questions in the worksheet to help guide your exploration.

(b) Learn the syntax for writing a “loop” in Maple. There is a dis-
cussion of this in the worksheet. Loops are one of the most useful
of all computer programming techniques.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1One shows this using Rodrigues’ Formula and repeated integration by parts, noting

that the “surface terms” always vanish.
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24 LEGENDRE POLYNOMIAL SERIES

There is a very powerful mathematical theorem which says that any suffi-
ciently smooth function f(z), defined on the interval −1 < z < 1, can be
expanded as a linear combination of Legendre polynomials

f(z) =
∞
∑

ℓ=0

cℓ Pℓ(z) (156)

(This theorem is the analogue of the theorem which says that any sufficiently
smooth periodic function can be expanded in a Fourier series.) You will
have several occasions in physics to expand functions in Legendre polynomial
series, so we will explore the technique in this section.

We can find the coefficients cℓ by taking the inner product of both sides
of (156) in turn with each “basis vector” Pk and using (154). This yields

1
∫

−1

P ∗
k (z) f(z) dz =

1
∫

−1

P ∗
k (z)

∞
∑

ℓ=0

cℓ Pℓ(z) dz (157)

=
∞
∑

ℓ=0

cℓ

1
∫

−1

P ∗
k (z)Pℓ(z) dz (158)

=
∞
∑

ℓ=0

cℓ
δkℓ

ℓ+ 1
2

(159)

=
ck

k + 1
2

(160)

or equivalently

ck =

(

k +
1

2

)

1
∫

−1

P ∗
k (z) f(z) dz (161)

This expression should be compared with the exponential version of a Fourier
series for f(z) on the same interval −1 ≤ z ≤ 1, namely

f(z) =
∞
∑

n=−∞

Cn e
inπz (162)
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where

Cn =
1

2

1
∫

−1

e−inπzf(z) dz (163)

Note the analogous role played by the normalization constants k + 1
2

and 1
2
.

If we had made an unconventional, but more convenient, choice for the nor-
malization for the Legendre polynomials such that the value of the integrals
in (154) were simply δkℓ, then we would not need to carry around the extra
factor of k + 1

2
in (161).

1 Example: Legendre Expansion of ε(z)

Consider the step function

ε(z) = 2 Θ(z) − 1 =

{

+1 (z > 0)
−1 (z < 0)

(164)

where Θ is the Heaviside step function; note that ε(z) is an odd function of
z. Using (161) leads to

cℓ =

(

ℓ+
1

2

)

1
∫

−1

P ∗
ℓ (z) ε(z) dz (165)

= −
(

ℓ+
1

2

)

0
∫

−1

P ∗
ℓ (z) dz +

(

ℓ+
1

2

)

1
∫

0

P ∗
ℓ (z) dz (166)

and each integral in the final expression is an elementary integral of a poly-
nomial. Furthermore, it is easily seen that these two integrals cancel if ℓ is
even, and add if ℓ is odd, so that

cℓ =















0 (ℓ even)

2

(

ℓ+
1

2

)

1
∫

0

P ∗
ℓ (z) dz (ℓ odd)

(167)

These coefficients are easily evaluated on Maple for as many values of ℓ as
desired.
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25 ASSOCIATED LEGENDRE FUNCTIONS

We now return to equation (128) to consider the cases with m 6= 0. We
can solve these equations with (a slightly more sophisticated version of) the
series techniques from them = 0 case. We would again find solutions that are
regular at z = ±1 whenever we choose A = −ℓ(ℓ+ 1) for ℓ ∈ {0, 1, 2, 3, . . .}.
With this value for A, we obtain the standard form of Legendre’s associated
equation, namely

(

∂2

∂z2
− 2z

1 − z2

∂

∂z
+
ℓ(ℓ+ 1)

1 − z2
− m2

(1 − z2)2

)

P (z) = 0 (168)

Recall that this equation was obtained by separating variables in spherical
coordinates. Solutions of this equation which are regular at z = ±1 are called
associated Legendre functions, and turn out to be given by

Pm
ℓ (z) = P−m

ℓ (z) = (1 − z2)m/2 d
m

dzm
(Pℓ(z)) (169)

= (1 − z2)m/2 d
m+ℓ

dzm+ℓ

(

(z2 − 1)ℓ
)

(170)

where m ≥ 0. 2 Note that if z = cos θ, then Pℓ(z) is a polynomial in cos θ,
while

(1 − z2)m/2 = (sin2θ)m/2 = sinmθ (171)

so that Pm
ℓ (z) is a polynomial in cos θ times a factor of sinmθ. Some other

properties of the associated Legendre functions are

• Pm
ℓ (z) = 0 if |m| > ℓ

• P−m
ℓ (z) = Pm

ℓ (z)

• Pm
ℓ (±1) = 0 for m 6= 0 (cf. factor of (1 − z2)m/2)

• Pm
ℓ (−z) = (−1)ℓ−mPm

ℓ (z) (behavior under parity)

•
1
∫

−1

Pm
ℓ (z)Pm

q (z) dz =
2

(2ℓ+ 1)

(ℓ+m)!

(ℓ−m)!
δℓq

The last property shows that for each given value ofm, the Associated Legen-
dre functions form an orthonormal basis on the interval −1 ≤ z ≤ 1. Any
function on this interval can be expanded in terms of anyone of these bases.

2Some authors define P
−m

ℓ
(z) with a different phase.
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26 SPHERICAL HARMONICS

We have found that normalized solutions of the φ equation (102) satisfying
periodic boundary conditions are

Φ(φ) =
1√
2π

eimφ (m = 0,±1,±2, ...) (172)

and normalized solutions of the θ equation (101 which are regular at the
poles are given by

P (cos θ) =

√

(2ℓ+ 1)

2

(ℓ− |m|)!
(ℓ+ |m|)! P

m
ℓ (cos θ) (173)

Combining these yields via multiplication (we assumed solutions of this type
when we first did the separation of variables procedure), we obtain the spher-

ical harmonics

Y m
ℓ (θ, φ) = (−1)(m+|m|)/2

√

(2ℓ+ 1)

4π

(ℓ− |m|)!
(ℓ+ |m|)! P

m
ℓ (cos θ) eimφ (174)

where the somewhat peculiar choice of phase is conventional.
The spherical harmonics are orthonormal on the unit sphere:

2π
∫

0

π
∫

0

(

Y m1

ℓ1

)∗
Y m2

ℓ2
sin θ dθ dφ = δℓ1ℓ2δm1m2

(175)

since dz = sin θ dθ. They are complete in the sense that any sufficiently
smooth function f on the unit sphere can be expanded in a Laplace series as

f(θ, φ) =
∞
∑

ℓ=0

ℓ
∑

m=−ℓ

aℓm Y
m
ℓ (θ, φ) (176)

where

aℓm =

2π
∫

0

π
∫

0

(Y m
ℓ )∗ f(θ, φ) sin θ dθ dφ (177)
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1 Example

Suppose you want a function of (θ, φ) which satisfies

f(θ, φ) =
{

sin θ 0 < θ < π
2

0 otherwise
(178)

Then f takes the form (176), and the constants aℓm can be determined from
(177), yielding

aℓm =

2π
∫

0

π/2
∫

0

(Y m
ℓ )∗ sin2θ dθ dφ (179)

= Nℓm

2π
∫

0

e−imφ dφ

π/2
∫

0

Pm
ℓ (cos θ) sin2θ dθ (180)

where

Nℓm = (−1)(m+|m|)/2

√

(2ℓ+ 1)

4π

(ℓ− |m|)!
(ℓ+ |m|)! (181)

Thus,

aℓm =















0 (m 6= 0)

√

(2ℓ+ 1)π

π/2
∫

0

Pℓ(cos θ) sin2θ dθ (m = 0)
(182)

For m = 0, the integral is most easily computed with the substitution
z = cos θ; the first few coefficients are:

a00 =
π

8
a10 =

1

2
a20 = −5π

64

a30 = − 7

12
a40 = − 9π

512
a50 =

77

240
(183)

(each of which should be multiplied by
√

4π/(2ℓ+ 1) ). As you can check
by graphing, however, it requires at least twice this many terms to obtain a
good approximation.
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