
QUANTUM CENTRAL FORCES

Abstract

The Schrödinger equation in a central potential is examined. The
separation of variables procedure is used to turn this partial differential
equation into a set of ordinary differential equations. The angular
equations are solved, first for a particle confined to a ring and then for
a particle confined to a sphere, thereby building up, one dimension at
a time, toward the eigenstates of the hydrogen atom. Special attention
is paid to linear combinations of states and time-dependent states.

The properties of the spherical harmonics are explored, including
a brief introduction to angular-momentum raising and lowering op-
erators. The relationship of spherical harmonics to spin 1 systems is
discussed. The eigenstates on the surface of a sphere are shown to be
the same as the rigid rotor problem and the properties of rotational
spectra are discussed.

The radial equation is solved and the properties of the eigenstates
of the (unperturbed) hydrogen atom are explored.

13 INTRODUCTION

We now begin our analysis of the central force problem in quantum mechan-
ics. We will find that there are some similarities and some differences between
the handling of this problem in classical mechanics and quantum mechanics.
Concepts such as acceleration or Newton’s third law have no counterpart in
quantum physics. However, we shall find that reduction of the two-body
problem to a fictitious one-body problem is also a characteristic of the quan-
tum analysis. And we will again find that angular momentum is a critical
aspect of our description of the motion of the system, related to spherical
symmetry.

As we did in analyzing our classical central force problem, we again as-
sume a two-particle system in which the only interaction is the mutual in-
teraction of the two particles. We assume that this interaction depends only
on the separation distance between the particles and not on any angle or
orientation in space. In this case, as in the classical problem, we will find
that the angular momentum is a constant of the motion, but in quantum
mechanics angular momentum (like energy) is quantized.
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As always in quantum mechanics, we begin with Schrödinger’s equation

HopΨ = ih̄
∂Ψ

∂t

14 Reduced Mass

It is helpful to consider briefly how the quantum two-body problem separates
into an equation governing the center of mass and an equation describing the
system around the center of mass, comparing this process to the classical
problem. The quantum two-body problem in three dimensions is very messy,
but all the essential features of the calculation show up in a simple one-
dimensional model. So, for simplicity, let’s consider a system of two particles,
m1 and m2, lying on a line at positions x1 and x2, and let the interaction
between the particles be represented by a potential energy U that depends
only on x = x1 − x2, the separation distance between the particles. Don’t
worry about how the particles can get past each other on the line—this is a
simple toy model; just imagine that they can pass right through each other.

Our first job, as always, is to identify the Hamiltonian Hop for the system.
Because energies are additive, the kinetic part of the Hamiltonian is just the
sum of the kinetic parts for two individual particles and the potential U(x)
describes the interaction between them. Therefore the Hamiltonian is

Hop = − h̄2

2m1

∂2

∂x2
1

− h̄2

2m2

∂2

∂x2
2

+ U(x) (63)

and the wave function Ψ is a function of the positions of both particles (and
of course time) Ψ = Ψ(x1, x2, t).

Inspired by our experience with classical two-body systems, we will try
rewriting the Hamiltonian (63) in terms of the center-of-mass coordinate X,
given by

X =
m1x1 +m2x2

m1 +m2

(64)

and the relative coordinate x. We will use the chain rule of calculus to
transform the partial derivatives in equation (63) to derivatives with respect
to x and X. (Please see Appendix A , especially the worked example on
plane polar coordinates.) The transformations for first derivatives are:

∂

∂x1

=
∂x

∂x1

∂

∂x
+
∂X

∂x1

∂

∂X
=

∂

∂x
+

m1

m1 +m2

∂

∂X
(65)

21



∂

∂x2

=
∂x

∂x2

∂

∂x
+
∂X

∂x2

∂

∂X
= − ∂

∂x
+

m2

m1 +m2

∂

∂X
(66)

It is important to note that we cannot simply write equations (65–66) for the
second derivative, which is what we need for the Hamiltonian (63). To find
the second derivative, we must apply the first derivative rules (65–66) twice:

∂2

∂x2
1

Ψ =
∂

∂x1

∂

∂x1

Ψ (67)

=

(

∂

∂x
+

m1

m1 +m2

∂

∂X

)(

∂

∂x
+

m1

m1 +m2

∂

∂X

)

Ψ (68)

=
∂2

∂x2
Ψ +

2m1

m1 +m2

∂2

∂x∂X
Ψ +

(

m1

m1 +m2

)2
∂2

∂X2
Ψ (69)

∂2

∂x2
2

Ψ =
∂

∂x2

∂

∂x2

Ψ (70)

=

(

∂

∂x
+

m1

m1 +m2

∂

∂X

)(

∂

∂x
+

m1

m1 +m2

∂

∂X

)

Ψ (71)

=
∂2

∂x2
Ψ − 2m1

m1 +m2

∂2

∂x∂X
Ψ +

(

m1

m1 +m2

)2
∂2

∂X2
Ψ (72)

Substituting into the Hamiltonian (63), we obtain for Schrödinger’s equation

{

− h̄2

2µ

∂2

∂x2
− h̄2

2(m1 +m2)

∂2

∂X2
+ U(x)

}

Ψ(X, x, t) = ih̄
∂

∂t
Ψ(X, x, t) (73)

By transforming to these coordinates, the middle terms in equations (69)
and (72) have canceled, enabling us to separate the dependence on x from
the dependence on X. We can now write

Ψ(x,X, t) = ψM(X)ψµ(x)T (t) (74)

After a separation of variables procedure (see Appendix B ) on equation (74),
we find that the ordinary differential equation governing the variable X has
a simple, recognizable form (see Problem 14.3b). The solution has the same
form as the free-particle solution to the Schrödinger equation (also called the
plane-wave solution to the equation)

ψM(X) = eiPXX/h̄ (75)
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where PX represents the momentum associated with the motion of the cen-
ter of mass. All observables in quantum mechanics involve the probability
density, i.e. terms of the form Ψ∗Ψ, so if we are evaluating observables associ-
ated with the relative motion, the pure phase contribution from the center-of
mass has no effect. We can therefore ignore the center-of-mass motion and
concentrate only on the relative motion.

We have arrived at a conclusion in the quantum analysis of the two-
body problem that is similar to our analysis of the classical problem (but for
different reasons). We have again replaced the more complicated two-body
system with a fictitious one-body system, involving the relative coordinate
and the reduced mass. Once we have solved the problem and found ψµ(x)
and T (t), we can then reverse the procedure in this section to find the wave
function Ψ(x1, x2, t) describing the original two-body system. The analysis
in three dimensions is the same, except that we must do the calculation three
times, once for each of the rectangular coordinates.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 Problems

1. Work through the steps of the chain rule to show that equation (73)
follows from equation (63)

2. Where does the mass of a particle appear in Schrödinger’s equation?
In equation (73), what is the mass associated with the center-of-mass
coordinate X? what is the mass associated with the relative position
coordinate x? Does this make sense?

3. Use the separation of variables procedure in Appendix B to break equa-
tion (73) up into three ordinary differential equations.

(a) How many separation constants do you have? Is this the number
you expect? Explain.

(b) Solve the equations for ψM(X). What are the possible eigenval-
ues?

(c) Give an appropriate name to the eigenvalues of the (unsolved)
equation for ψµ(x).

(d) Solve the equation for T (t). Discuss how the energy E of the
system depends on the separation constants.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15 SCHRÖDINGER’S EQUATION IN SPHER-

ICAL COORDINATES

Schrödinger’s equation is

HopΨ = ih̄
∂Ψ

∂t
(76)

For one-dimensional waves, the Hamiltonian is

Hop = − h̄2

2µ

∂2

∂x2
+ U(x) (77)

In a central potential the role of the second derivative with respect to x is
played by the Laplacian operator ∇2 and the potential energy is a function
only on the separation variable U = U(r), making the Hamiltonian:

Hop = − h̄2

2µ
∇2 + U(r) (78)

Because of the parameter r, this problem is clearly asking for the use of
spherical coordinates, centered at the origin of the central force.

In rectangular coordinates, we know that the Laplacian ∇2 is given by:

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(79)

What is the Laplacian in spherical coordinates? Since ∇2 def
= ~∇ · ~∇, we can

combine the spherical coordinate definitions of gradient and divergence

~∇V =
∂V

∂r
r̂ +

1

r

∂V

∂θ
θ̂ +

1

r sin θ

∂V

∂φ
φ̂ (80)

~∇ · ~v =
1

r2

∂

∂r
(r2vr) +

1

r sin θ

∂

∂θ
(sin θvθ) +

1

r sin θ

∂vφ

∂φ
(81)

to obtain:

∇2 =
1

r2

∂

∂r

(

r2 ∂

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

r2 sin2 θ

∂2

∂φ2
(82)
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For convenience, we will give the combination of angular derivatives which
appears in (82) a new name:

L2
op

def
= −h̄2

[

1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

sin2 θ

∂2

∂φ2

]

(83)

Notice the conventional factor of −h̄2. h̄ is a constant, 1.05459 × 10−27 erg-
sec = 6.58217 × 10−16 eV-sec. Notice that the dimensions of h̄ are those of
angular momentum. With this definition, (82) becomes:

∇2 =
1

r2

∂

∂r

(

r2 ∂

∂r

)

− 1

h̄2r2
L2

op (84)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 Practice Problems

1. Review the definition of spherical coordinates. Remember that in our
conventions θ is always the angle measured from the z axis and ranges
from 0 to π. φ is the angle in the x-y plane measured from the x axis
towards the y axis and ranges from 0 to 2π.

2. Review the definition of gradient and divergence in spherical coordi-
nates. See Griffiths E&M, Appendix A, for a nice derivation. What is
the fastest place to look-up expressions for gradient, etc. in spherical
and cylindrical coordinates?

3. Using the definition of gradient (80) and divergence (81) in spherical
coordinates, derive equation (82).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16 SEPARATION OF VARIABLES

We will use the “separation of variables” procedure (see Appendix B ) on
the Schrödinger equation in a central potential. Most of the calculation will
involve using this procedure on the Laplacian operator. Since the Laplacian
comes up in almost all physics problems with spherical symmetry, you will
find yourself using the results of this section many times in your career.
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Because there are several spatial dimensions, the procedure requires a
number of rounds, each consisting of the same set of six steps. In the first
round, we will separate out an ordinary differential equation in the time
variable.

Step 1: Write the partial differential equation in appropriate coordinate
system. For Schrödinger’s equation in any potential we have:

HopΨ = ih̄
∂Ψ

∂t
(85)

Step 2: Assume that the solution Ψ can be written as the product of
functions, at least one of which depends on only one variable, in this case t.
The other function(s) must not depend at all on this variable, i.e. assume

Ψ(r, θ, φ, t) = ψ(r, θ, φ)T (t) (86)

Plug this assumed solution (203) into the partial differential equation
(85). Because of the special form for Ψ, the partial derivatives each act on
only one of the factors in Ψ.

(Hopψ)T = ih̄ψ
dT

dt
(87)

Any partial derivatives that act only on a function of a single variable may
be rewritten as total derivatives.

Step 3: Divide by Ψ in the form of (203).

1

ψ
(Hopψ) = ih̄

dT

dt

1

T
(88)

Step 4: Isolate all of the dependence on one coordinate on one side of
the equation. Do as much algebra as you need to do to achieve this. In our
example, notice that in (205), all of the t dependence is on the right-hand
side of the equation while all of the dependence on the spatial variable is on
the other side. In this case, the t dependence is already isolated, without any
algebra on our part.

Step 5: Now imagine changing the isolated variable t by a small amount.
In principle, the right-hand side of (205) could change, but nothing on the
left-hand side would. Therefore, if the equation is to be true for all values
of t, the particular combination of t dependence on the right-hand side must
be constant. By convention, we call this constant E.

1

ψ
(Hopψ) = ih̄

dT

dt

1

T
def
= E (89)
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In this way we have broken our original partial differential equation up into a
pair of equations, one of which is an ordinary differential equation involving
only t, the other is a partial differential equation involving only the three
spatial variables.

1

ψ
Hopψ = E (90)

ih̄
dT

dt

1

T
= E (91)

The separation constant E appears in both equations.
Step 6: Write each equation in standard form by multiplying each equa-

tion by its unknown function to clear it from the denominator.

Hopψ = Eψ (92)

dT

dt
= − i

h̄
ET (93)

Notice that (209) is an eigenvalue equation for the operator Hop. You may
never have thought of the derivation of this “time independent version of the
Schrödinger equation” from the Schrödinger equation as just a simple exam-
ple of the separation of variables procedure. At the moment, the eigenvalue
E could be anything. Much of the rest of the Paradigm will be directed
toward finding the possible values of E!

Now we must repeat the steps until each of the variables has been sepa-
rated out into its own ordinary differential equation. In the next round, we
will isolate the r dependence.

Step 1: Since we want to isolate the r dependence, we must rewrite Hop

to show the r dependence explicitly using (84)

− h̄2

2µ

[

1

r2

∂

∂r

(

r2 ∂

∂r

)

− 1

h̄2r2
L2

op

]

ψ + U(r)ψ = Eψ (94)

Step 2: Assume ψ(r, θ, φ) = R(r)Y (θ, φ).

− h̄2

2µ

[

1

r2

d

dr

(

r2dR

dr

)

Y − 1

h̄2r2
R(L2

opY )

]

+ U(r)RY = ERY (95)

Step 3:

− h̄2

2µ

[

1

r2

d

dr

1

R

(

r2dR

dr

)

− 1

h̄2r2

1

Y
(L2

opY )

]

+ U(r) = E (96)
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Step 4: To isolate the r dependence we must first clear the r dependence
from the angular term (involving angular derivatives in Lop and angular
functions in Y ). To do this, we need to multiply (96) by r2 to clear this
factor out of the denominators of the angular pieces. Further rearranging
(96) to get all of the r dependence on the right-hand side, we obtain:

− 1

h̄2

1

Y
(L2

opY ) = − d

dr

(

r2dR

dr

)

1

R
− 2µ

h̄2 (E − U(r))r2 (97)

Step 5: In this case, I have called the separation constant A.

− 1

h̄2

1

Y
(L2

opY ) = − d

dr

(

r2dR

dr

)

1

R
− 2µ

h̄2 (E − U(r))r2 def
= A (98)

In principle, A can be any complex number.
Step 6: Rearranging (98) slightly, we obtain the radial and angular

equations in the more standard form:

d

dr

(

r2dR

dr

)

+
2µ

h̄2 (E − U(r))r2R + AR = 0 (99)

L2
opY + h̄2AY = 0 (100)

Notice that the only place that the central potential enters the set of differ-
ential equations is in the radial equation (99). (99) is not yet in the form
of an eigenvalue equation since it contains two unknown constants E and A.
(100) is an eigenvalue equation for the operator L2

op with eigenvalue h̄2A; it
is independent of the form of the central potential.

In the last round, we must separate the θ dependence from the φ de-
pendence. I will leave this as an important Practice Problem. The answer
is:

sin θ
d

dθ

(

sin θ
dP

dθ

)

− A sin2 θP −BP = 0 (101)

d2Φ

dφ2
+BΦ = 0 (102)

(102) is an eigenvalue equation for the operator d2/dφ2 with eigenvalue B.
(101) is not yet in the form of an eigenvalue equation since it contains two
unknown constants A and B.
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We started with a partial differential equation in four variables and we
ended up with four ordinary differential equations (210), (99), (101), (102)
by introducing three separation constants (E, A, and B). You should al-
ways get one fewer separation constant than the number of variables you
started with; each separation constant should appear in two of the final set
of equations.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 Practice Problems

1. Work carefully through all of the derivations in this section.

2. Use the separation of variables procedure on (100) to obtain (101) and
(102).

3. Consider the problem of the motion of a quantum particle of mass µ
confined to move on a ring of radius r0. Redo the separation of variables
procedure in this section, assuming that r = r0 is a constant and θ = π

2

is a constant so that Ψ = T (t)Φ(φ) only. How do the equations you
get differ from the equations of this section? The solutions of these
equations will be the subject of the next section.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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