Central Forces Homework 9

Due 6/7/17, 4 pm

For every problem, before you start the problem, make a brief statement of the form that a correct solution should have, clearly indicating what quantities you need to solve for. This statement will be graded.

PRACTICE:

- 1. Use the recurrence relation for the radial wave function to construct the n = 3 radial states of hydrogen. Calculate the normalization constant for the $R_{32}(r)$ state.
- 2. By direct application of the differential operators, verify that the state $|321\rangle \doteq \psi_{321}(r,\theta,\phi)$ is an eigenstate of H, \mathbf{L}^2 , and L_z and determine the corresponding eigenvalues.

REQUIRED:

3. Write out the first 9 terms in the sum:

$$\sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} c_{\ell,m} Y_{\ell,m}$$

Describe the energy degeneracy of the rigid rotor system, i.e. give the number of eigenstates that all have the same energy.

4. Consider the normalized function:

$$f(\theta, \phi) = \begin{cases} N\left(\frac{\pi^2}{4} - \theta^2\right) & 0 < \theta < \frac{\pi}{2} \\ 0 & \frac{\pi}{2} < \theta < \pi \end{cases}$$

where

$$N = \frac{1}{\sqrt{\frac{\pi^5}{8} + 2\pi^3 - 24\pi^2 + 48\pi}}$$

- (a) Find the $|\ell, m\rangle = |0, 0\rangle$, $|1, -1\rangle$, $|1, 0\rangle$, and $|1, 1\rangle$ terms in a spherical harmonics expansion of $f(\theta, \phi)$.
- (b) If a quantum particle, confined to the surface of a sphere, is in the state above, what is the probability that a measurement of the square of the total angular momentum will yield $2\hbar^2$? $4\hbar^2$?
- (c) If a quantum particle, confined to the surface of a sphere, is in the state above, what is the probability that the particle can be found in the region $0 < \theta < \frac{\pi}{6}$ and $0 < \phi < \frac{\pi}{6}$? Repeat the question for the region $\frac{5\pi}{6} < \theta < \pi$ and $0 < \phi < \frac{\pi}{6}$. Plot your approximation from part (a) above and check to see if your answers seem reasonable.

- 5. Make a table, similar to the one you made for a particle confined to a ring, showing the different representations of the physical quantities associated with the rigid rotor. Include information about the operators \hat{H} , \hat{L}_z , and \hat{L}^2 .
- 6. Consider the initial state $\frac{1}{\sqrt{2}}(|2,0,0\rangle + |2,1,0\rangle)$ which is an *sp* hybrid orbital which occurs in chemistry in the study of molecular bonding.
 - (a) If you measure the energy of this state, what possible values could you obtain?
 - (b) What is this state as a function of time?
 - (c) Calculate the expectation value $\langle \hat{L}^2 \rangle$ in this state, as a function of time. Did you expect this answer? Comment.
 - (d) Write the time-dependent state in wave function notation.
 - (e) Calculate the expectation value $\langle \hat{z} \rangle$ as a function of time. Do you expect this answer?

Rigid Rotor/Particle on a Sphere

	Ket Representation	Wave Function Representation	Matrix Representation
Hamiltonian			
Eigenvalues of Hamiltonian			
Normalized Eigenstates of Hamiltonian			
Coefficient of the energy eigenstate with quantum numbers ℓ, m			
Probability of measuring $E_{\ell,m}$			

	Ket Representation	Wave Function Representation	Matrix Representation
Operator for square of the angular momentum			
Eigenvalues of L^2			
Normalized Eigenstates of L^2			
Coefficient of the eigenstatesof L^2 with quantum numbers ℓ, m			
Probability of measuring $\hbar^2 \ell(\ell+1)$ for the square of the angular momentum			

	Ket Representation	Wave Function Representation	Matrix Representation
Operator for z- component of angular momentum			
Eigenvalues of L_z			
Normalized Eigenstates of L_z			
Coefficient of m^{th} eigenstates of L_z			
Probability of measuring <i>mħ</i> for <i>z</i> -component of angular momentum			