## Central Forces Homework 7

Due 5/31/17, 4 pm
For every problem, before you start the problem, make a brief statement of the form that a correct solution should have, clearly indicating what quantities you need to solve for. This statement will be graded.

## PRACTICE:

1. Consider the normalized state $|\Phi\rangle$ for a quantum mechanical particle of mass $\mu$ constrained to move on a circle of radius $r_{0}$, given by:

$$
|\Phi\rangle=\frac{\sqrt{3}}{2}|3\rangle+\frac{i}{2}|-2\rangle
$$

(a) What is the probability that a measurement of $L_{z}$ will yield $2 \hbar$ ? $3 \hbar$ ?
(b) What is the probability that a measurement of energy will yield $E=\frac{2 \hbar^{2}}{I}$ ?
(c) What is the expectation value of $L_{z}$ in this state?
(d) What is the expectation value of the energy in this state?
2. Consider the normalized state $|\Phi\rangle$ for a quantum mechanical particle of mass $\mu$ constrained to move on a circle of radius $r_{0}$, given by:

$$
|\Phi\rangle=\frac{\sqrt{3}}{2}|3\rangle+\frac{i}{2}|-2\rangle
$$

(a) What is the probability that a measurement of $L_{z}$ will yield $2 \hbar$ ? $3 \hbar$ ?
(b) If you measured the z-component of angular momentum to be $3 \hbar$, what would the state of the particle be immediately after the measurement is made?
(c) What is the probability that a measurement of energy will yield $E=\frac{2 \hbar^{2}}{I}$ ?
(d) What is the expectation value of $L_{z}$ in this state?
(e) What is the expectation value of the energy in this state?
(f) If you measured the z-component of angular momentum at some time $t \neq 0$, what is the probability that you would obtain $3 \hbar$ ?

## REQUIRED:

3. Consider the following normalized quantum state on a ring:

$$
\Phi(\phi)=\sqrt{\frac{8}{3 \pi}} \sin ^{2}(3 \phi) \cos (\phi)
$$

(a) If you measured the $z$-component of angular momentum, what is the probability that you would obtain $\hbar ?-3 \hbar ?-7 \hbar$ ?
(b) If you measured the $z$-component of angular momentum, what other possible values could you obtain with non-zero probability?
(c) If you measured the energy, what is the probability that you would obtain $\frac{\hbar^{2}}{2 I}$ ? $\frac{4 \hbar^{2}}{2 I} ? \frac{25 \hbar^{2}}{2 I} ?$
(d) If you measured the energy, what possible values could you obtain with non-zero probability?
(e) What is the probability that the particle can be found in the region $0<\phi<\frac{\pi}{4}$ ? In the region $\frac{\pi}{4}<\phi<\frac{3 \pi}{4}$ ?
(f) Plot this wave function.
(g) What is the expectation value of $L_{z}$ in this state?
4. In this problem, you will carry out calculations on the following normalized abstract quantum state on a ring:

$$
|\Psi\rangle=\sqrt{\frac{1}{4}}(|1\rangle+\sqrt{2}|2\rangle+|3\rangle)
$$

(a) You carry out a measurement to determine the energy of the particle at time $t=0$. Calculate the probability that you measure the energy to be $\frac{4 \hbar^{2}}{2 I}$.
(b) You carry out a measurement to determine the z-component of the angular momentum of the particle at time $t=0$. Calculate the probability that you measure the z-component of the angular momentum to be $3 \hbar$.
(c) You carry out a measurement on the location of the particle at time, $t=0$. Calculate the probability that the particle can be found in the region $0<\phi<\frac{\pi}{2}$.
(d) You carry out a measurement to determine the energy of the particle at time $t=\frac{2 I}{\hbar} \frac{\pi}{4}$. Calculate the probability that you measure the energy to be $\frac{4 \hbar^{2}}{2 I}$.
(e) You carry out a measurement to determine the z-component of the angular momentum of the particle at time $t=\frac{2 I}{\hbar} \frac{\pi}{4}$. Calculate the probability that you measure the z-component of the angular momentum to be $3 \hbar$.
(f) You carry out a measurement on the location of the particle at time, $t=\frac{2 I}{\hbar} \frac{\pi}{4}$. Calculate the probability that the particle can be found in the region $0<\phi<\frac{\pi}{2}$.
(g) Write a short paragraph explaining what representation/basis you used for each of the calculations above and why you chose to use that representation/basis.
(h) In the above calculations, you should have found some of the quantities to be time dependent and others to be time independent. Briefly explain why this is so. That is, for a time dependent state like $|\Psi\rangle$ explain what makes some observables time dependent and others time independent.
5. Attached, you will find a table showing different representations of physical quantities associated with a particle-in-a-box. Make a similar table for a particle confined to a ring. Include all of the following information.

- Hamiltonian
- Eigenvalues of Hamiltonian
- Normalized eigenstates of Hamiltonian
- Coefficient of the nth eigenstate
- Probability of measuring $E_{n}$
- Expectation value of Hamiltonian
- Z-component of angular momentum
- Eigenvalues of z-component of angular momentum
- Eigenstates of z-component of angular momentum
- Coefficient of mth state of z-component of angular momentum
- Probability of measuring $m \hbar$ for z-component of angular momentum
- Expectation value of z -component of angular momentum

Particle in a Box

|  | Ket Representation | Wave Function Representation | Matrix Representation |
| :---: | :---: | :---: | :---: |
| Hamiltonian | $\hat{H}$ | $-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}$ | $\left(\begin{array}{cccc}E_{1} & 0 & 0 & \cdots \\ 0 & E_{2} & 0 & \cdots \\ 0 & 0 & E_{3} & \cdots \\ \vdots & \vdots & \vdots & \ddots\end{array}\right)$ |
| Eigenvalues of Hamiltonian | $E_{n}=\frac{\pi^{2} \hbar^{2}}{2 m L^{2}} n^{2}$ | $E_{n}=\frac{\pi^{2} \hbar^{2}}{2 m L^{2}} n^{2}$ | $E_{n}=\frac{\pi^{2} \hbar^{2}}{2 m L^{2}} n^{2}$ |
| Normalized Eigenstates of Hamiltonian | $\|n\rangle$ | $\psi_{n}(x)=\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi}{L} x\right)$ | $\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots\end{array}\right), \quad\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right), \ldots$ |
| Coefficient of $n^{\text {th }}$ energy eigenstate | $c_{n}=\langle n \mid \psi\rangle$ | $c_{n}=\int_{0}^{L} \sqrt{\frac{2}{L}} \sin \left(\frac{n \pi}{L} x\right) \psi(x) d x$ | $\left(\begin{array}{llll}0 & \cdots & 1 & \cdots\end{array}\right)\left(\begin{array}{c}c_{1} \\ \vdots \\ c_{n} \\ \vdots\end{array}\right)$ |
| Probability of measuring $E_{n}$ | $P\left(E_{n}\right)=\left\|c_{n}\right\|^{2}=\|\langle n \mid \psi\rangle\|^{2}$ | $P\left(E_{n}\right)=\left\|c_{n}\right\|^{2}=\left\|\int_{0}^{L} \sqrt{\frac{2}{L}} \sin \left(\frac{n \pi}{L} x\right) \psi(x) d x\right\|^{2}$ | $\left.P\left(E_{n}\right)=\left\|c_{n}\right\|^{2}=\left\lvert\, \begin{array}{llll}0 & \cdots & 1 & \cdots\end{array}\right.\right)\left(\begin{array}{c}c_{1} \\ \vdots \\ c_{n} \\ \vdots\end{array}\right)\left\|\left.\right\|^{2}\right.$ |
| Expectation value of Hamiltonian | $\langle\psi\| H\|\psi\rangle=\sum_{n}\left\|c_{n}\right\|^{2} E_{n}$ | $\langle\psi\| H\|\psi\rangle=\int_{0}^{L} \psi^{*}(x) \hat{H} \psi(x) d x$ | $\langle\psi\| H\|\psi\rangle=\left(\begin{array}{lll}c_{1}^{*} & c_{2}{ }^{*} & \cdots\end{array}\right)\left(\begin{array}{ccc}E_{1} & 0 & \cdots \\ 0 & E_{2} & \cdots \\ \vdots & \vdots & \ddots\end{array}\right)\left(\begin{array}{c}c_{1} \\ c_{2} \\ \vdots\end{array}\right)$ |

## Particle on a Ring

|  | Ket Representation | Wave Function Representation | Matrix Representation |
| :--- | :--- | :--- | :--- |
| Hamiltonian |  |  |  |
| Eigenvalues of <br> Hamiltonian |  |  |  |
| Normalized <br> Eigenstates of <br> Hamiltonian |  |  |  |
| Coefficient of <br> $m^{\text {th }}$ energy <br> eigenstates |  |  |  |
| Probability of <br> measuring $E_{m}$ |  |  |  |
| Expectation value of <br> Hamiltonian |  |  |  |

## Particle on a Ring

| Operator for z- <br> component of <br> angular momentum |  |  |  |
| :--- | :--- | :--- | :--- |
| Eigenvalues of z- <br> component of <br> angular momentum |  |  |  |
| Normalized <br> Eigenstates of z- <br> component of <br> angular momentum |  |  |  |
| Coefficient of <br> m |  |  |  |
| z-component of |  |  |  |
| angular momentum |  |  |  |
| Probability of <br> measuring m for z- <br> component of <br> angular momentum |  |  |  |
| Expectation value of <br> z-component of <br> angular momentum |  |  |  |

