Electric Potentials from Two Charges

Your group will be assigned one of the following problems. Work out your problem by brainstorming together on a big whiteboard and answer the following questions:

- For what values of \vec{r} does your series converge?
- For what values of \vec{r} is your approximation a good one?
- Which direction would a test charge move under the influence of this electric potential?

Then write a clean version of your solution (with a reasonable number of intermediate steps) on a new board. If your group gets done early, go on to another problem. The fourth problem in each set is the most challenging, and the most interesting.

- Two charges +Q and +Q are placed on a line at z = -D and z = +D respectively.
 - What is a fourth order approximation to the electric potential $V(\vec{r})$ for y = z = 0and $|x| \ll D$?
 - What is a fourth order approximation to the electric potential $V(\vec{r})$ for x = y = 0and $|z| \ll D$?
 - What is a fourth order approximation to the electric potential $V(\vec{r})$ for y = z = 0and $|x| \gg D$?
 - What is a fourth order approximation to the electric potential $V(\vec{r})$ for x = y = 0and $|z| \gg D$?
- Two charges -Q and +Q are placed on a line at z = -D and z = +D respectively.
 - What is a fourth order approximation to the electric potential $V(\vec{r})$ for y = z = 0and $|x| \ll D$?
 - What is a fourth order approximation to the electric potential $V(\vec{r})$ for x = y = 0and $|z| \ll D$?
 - What is a fourth order approximation to the electric potential $V(\vec{r})$ for y = z = 0and $|x| \gg D$?
 - What is a fourth order approximation to the electric potential $V(\vec{r})$ for x = y = 0and $|z| \gg D$?

by Corinne Manogue ©2019 Corinne A. Manogue