PH422: Static Fields

Quiz 3

The quiz on Monday, January 27, will be on the dot and cross products in rectangular, cylindrical, and spherical coordinates. You can find more information at: physics.oregonstate.edu/mathbook/GSF/dot.html physics.oregonstate.edu/mathbook/GSF/basisvectors.html physics.oregonstate.edu/mathbook/GSF/orthogonal.html physics.oregonstate.edu/mathbook/GSF/cross2.html

Some sample types of questions are:

- 1. Are the following equalities true or false? Why?
 - (a)

$$(\hat{x} - \hat{z}) \cdot \hat{x} = -1$$

Solution:

False. The dot product is distributive, so

$$(\hat{x} - \hat{z}) \cdot \hat{x} = \hat{x} \cdot \hat{x} - \hat{z} \cdot \hat{x} = 1 + 0 = 1$$

(b)

$$(\hat{x} - \hat{z}) \times \hat{x} = -\hat{y}$$

Solution:

True. The cross product is also distributive, so

$$(\hat{x} - \hat{z}) \times \hat{x} = \hat{x} \times \hat{x} - \hat{z} \times \hat{x} = 0 - \hat{y},$$

since $\hat{z} \times \hat{x} = \hat{y}$.

(c)

 $(\hat{x} + \hat{y}) \cdot \hat{z} = 0$

Solution:

True. The dot product is distributive and \hat{z} is perpendicular to both \hat{x} and \hat{y} .

(d)

$$(\hat{x} + \hat{y}) \times \hat{z} = \hat{x} + \hat{y}$$

Solution:

False. The cross product is distributive, but not commutative. Thus,

$$(\hat{x} + \hat{y}) \times \hat{z} = \hat{x} \times \hat{z} + \hat{y} \times \hat{z} = -\hat{y} + \hat{x}.$$

2. Are the following equalities true or false? Why?

(a)

$$\hat{y} \cdot \hat{z} = \hat{x}$$

Solution:

False. \hat{y} and \hat{z} are perpendicular to each other and therefore, the dot product is zero. However, for a right-handed coordinate system, $\hat{y} \times \hat{z} = \hat{x}$.

(b)

$$\hat{s} \times \hat{z} = -\hat{\phi}$$

Solution:

True. In a cylindrical coordinate system, \hat{s} , $\hat{\phi}$, and \hat{z} are a right-handed triple (like \hat{x} , \hat{y} , and \hat{z}).

(c)

$$\hat{r} \times \hat{\phi} = \hat{\theta}$$

Solution:

False. In spherical coordinates, \hat{r} , $\hat{\theta}$, and $\hat{\phi}$ are the right-handed triple. Thus, $\hat{r} \times \hat{\phi} = -\hat{\theta}$.

(d)

$$\hat{r} \cdot \hat{\theta} = 1$$

Solution:

False. \hat{r} and $\hat{\theta}$ are perpendicular to each other and thus, the dot product is zero.