2.5 Conductors 97 rmly charged ringing in an r the surface, up the radius entire sphere olies that the other hand, negative. For site charges a nuation is cor- ifferent quesy to make the simply found since Eq. 2.45 $dr = \infty$. te total energy when you're o leave out that te point charges are given to us t them together, process would ource of embaron as well as the pparently waterne former, $V(\mathbf{r}_i)$, whereas in the ere is no distinctly small, and its nt charges you'd ffer two different in the charge disvolve completely hell (Ex. 2.9) the rerywhere outside this surface. Where is the energy, then? Is it stored in the field, as Eq. 2.45 seems to suggest, or is it stored in the charge, as Eq. 2.43 implies? At the present stage this is simply an unanswerable question: I can tell you what the total energy is, and I can provide you with several different ways to compute it, but it is impertinent to worry about where the energy is located. In the context of radiation theory (Chapter 11) it is useful (and in general relativity it is essential) to regard the energy as stored in the field, with a density $$\frac{\epsilon_0}{2}E^2$$ = energy per unit volume. (2.46) But in electrostatics one could just as well say it is stored in the charge, with a density $\frac{1}{2}\rho V$. The difference is purely a matter of bookkeeping. (iii) The superposition principle. Because electrostatic energy is *quadratic* in the fields, it does *not* obey a superposition principle. The energy of a compound system is *not* the sum of the energies of its parts considered separately—there are also "cross terms": $$W_{\text{tot}} = \frac{\epsilon_0}{2} \int E^2 d\tau = \frac{\epsilon_0}{2} \int (\mathbf{E}_1 + \mathbf{E}_2)^2 d\tau$$ $$= \frac{\epsilon_0}{2} \int (E_1^2 + E_2^2 + 2\mathbf{E}_1 \cdot \mathbf{E}_2) d\tau$$ $$= W_1 + W_2 + \epsilon_0 \int \mathbf{E}_1 \cdot \mathbf{E}_2 d\tau. \tag{2.47}$$ For example, if you double the charge everywhere, you quadruple the total energy. **Problem 2.36** Consider two concentric spherical shells, of radii a and b. Suppose the inner one carries a charge q, and the outer one a charge -q (both of them uniformly distributed over the surface). Calculate the energy of this configuration, (a) using Eq. 2.45, and (b) using Eq. 2.47 and the results of Ex. 2.9. **Problem 2.37** Find the interaction energy $(\epsilon_0 \int \mathbf{E}_1 \cdot \mathbf{E}_2 d\tau)$ in Eq. 2.47 for two point charges, q_1 and q_2 , a distance a apart. [Hint: Put q_1 at the origin and q_2 on the z axis; use spherical coordinates, and do the r integral first.] ### 2.5 ■ CONDUCTORS # 2.5.1 ■ Basic Properties In an **insulator**, such as glass or rubber, each electron is on a short leash, attached to a particular atom. In a metallic **conductor**, by contrast, one or more electrons per atom are free to roam. (In liquid conductors such as salt water, it is ions that do the moving.) A *perfect* conductor would contain an *unlimited* supply of free charges. In real life there are no perfect conductors, but metals come pretty close, for most purposes. From this definition, the basic electrostatic properties of ideal conductors immediately follow: (i) E = 0 inside a conductor. Why? Because if there were any field, those free charges would move, and it wouldn't be electrostatics any more. Hmm ... that's hardly a satisfactory explanation; maybe all it proves is that you can't have electrostatics when conductors are present. We had better examine what happens when you put a conductor into an external electric field \mathbf{E}_0 (Fig. 2.42). Initially, the field will drive any free positive charges to the right, and negative ones to the left. (In practice, it's the negative charges-electrons-that do the moving, but when they depart, the right side is left with a net positive charge—the stationary nuclei—so it doesn't really matter which charges move; the effect is the same.) When they come to the edge of the material, the charges pile up: plus on the right side, minus on the left. Now, these induced charges produce a field of their own, ${\bf E}_1$, which, as you can see from the figure, is in the opposite direction to ${\bf E}_0$. That's the crucial point, for it means that the field of the induced charges tends to cancel the original field. Charge will continue to flow until this cancellation is complete, and the resultant field inside the conductor is precisely zero.9 The whole process is practically instantaneous. (ii) $\rho = 0$ inside a conductor. This follows from Gauss's law: $\nabla \cdot \mathbf{E} = \rho/\epsilon_0$. If **E** is zero, so also is ρ . There is still charge around, but exactly as much plus as minus, so the net charge density in the interior is zero. (iii) Any net charge resides on the surface. That's the only place left. (iv) A conductor is an equipotential. For if a and b are any two points within (or at the surface of) a given conductor, $V(\mathbf{b}) - V(\mathbf{a}) = -\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{E} \cdot d\mathbf{l} = 0$, and hence $V(\mathbf{a}) = V(\mathbf{b})$. (v) E is perpendicular to the surface, just outside a conductor. Otherwise, as in (i), charge will immediately flow around the surface until it kills off the tangential component (Fig. 2.43). (Perpendicular to the surface, charge cannot flow, of course, since it is confined to the conducting object.) FIGURE 2.42 $^{^9}$ Outside the conductor the field is not zero, for here E_0 and E_1 do not tend to cancel. ideal conductors re any field, those by more. Hmm ... hat you can't have nine what happens ig. 2.42). Initially, egative ones to the lo the moving, but ige—the stationary effect is the same.) p: plus on the right is field of their own, ection to E₀. That's iges tends to cancel llation is complete, The whole process law: $\nabla \cdot \mathbf{E} = \rho/\epsilon_0$. tly as much plus as aly place left. are any two points $= -\int_a^b \mathbf{E} \cdot d\mathbf{l} = 0,$ iductor. Otherwise, until it kills off the face, charge cannot FIGURE 2.43 I think it is astonishing that the charge on a conductor flows to the surface. Because of their mutual repulsion, the charges naturally spread out as much as possible, but for *all* of them to go to the surface seems like a waste of the interior space. Surely we could do better, from the point of view of making each charge as far as possible from its neighbors, to sprinkle *some* of them throughout the volume ... Well, it simply is not so. You do best to put *all* the charge on the surface, and this is true regardless of the size or shape of the conductor. ¹⁰ The problem can also be phrased in terms of energy. Like any other free dynamical system, the charge on a conductor will seek the configuration that minimizes its potential energy. What property (iii) asserts is that the electrostatic energy of a solid object (with specified shape and total charge) is a minimum when that charge is spread over the surface. For instance, the energy of a sphere is $(1/8\pi\epsilon_0)(q^2/R)$ if the charge is uniformly distributed over the surface, as we found in Ex. 2.9, but it is greater, $(3/20\pi\epsilon_0)(q^2/R)$, if the charge is uniformly distributed throughout the volume (Prob. 2.34). ## 2.5.2 ■ Induced Charges If you hold a charge +q near an uncharged conductor (Fig. 2.44), the two will attract one another. The reason for this is that q will pull minus charges over to the near side and repel plus charges to the far side. (Another way to think of it is that the charge moves around in such a way as to kill off the field of q for points inside the conductor, where the total field must be zero.) Since the negative induced charge is closer to q, there is a net force of attraction. (In Chapter 3 we shall calculate this force explicitly, for the case of a spherical conductor.) When I speak of the field, charge, or potential "inside" a conductor, I mean in the "meat" of the conductor; if there is some hollow *cavity* in the conductor, and 1 to cancel. ¹⁰By the way, the one- and two-dimensional analogs are quite different: The charge on a conducting disk does not all go to the perimeter (R. Friedberg, Am. J. Phys. 61, 1084 (1993)), nor does the charge on a conducting needle go to the ends (D. J. Griffiths and Y. Li, Am. J. Phys. 64, 706 (1996))—see Prob. 2.56. Moreover, if the exponent of r in Coulomb's law were not precisely 2, the charge on a solid conductor would not all go to the surface—see D. J. Griffiths and D. Z. Uvanovic, Am. J. Phys. 69, 435 (2001), and Prob. 2.53g. **FIGURE 2.44** **FIGURE 2.45** within that cavity you put some charge, then the field in the cavity will not be zero. But in a remarkable way the cavity and its contents are electrically isolated from the outside world by the surrounding conductor (Fig. 2.45). No external fields penetrate the conductor; they are canceled at the outer surface by the induced charge there. Similarly, the field due to charges within the cavity is canceled, for all exterior points, by the induced charge on the inner surface. However, the compensating charge left over on the outer surface of the conductor effectively "communicates" the presence of q to the outside world. The total charge induced on the cavity wall is equal and opposite to the charge inside, for if we surround the cavity with a Gaussian surface, all points of which are in the conductor (Fig. 2.45), $\oint \mathbf{E} \cdot d\mathbf{a} = 0$, and hence (by Gauss's law) the net enclosed charge must be zero. But $Q_{\text{enc}} = q + q_{\text{induced}}$, so $q_{\text{induced}} = -q$. Then if the conductor as a whole is electrically neutral, there must be a charge +q on its outer surface. **Example 2.10.** An uncharged spherical conductor centered at the origin has a cavity of some weird shape carved out of it (Fig. 2.46). Somewhere within the cavity is a charge *q. Question:* What is the field outside the sphere? FIGURE 2.46 2.45 I not be zero. solated from xternal fields the induced is canceled, However, the or effectively narge induced a surround the or (Fig. 2.45), must be zero. as a whole is ne origin has a nere within the #### Solution At first glance, it would appear that the answer depends on the shape of the cavity and the location of the charge. But that's wrong: the answer is $$\mathbf{E} = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \hat{\mathbf{r}}$$ regardless. The conductor conceals from us all information concerning the nature of the cavity, revealing only the total charge it contains. How can this be? Well, the charge +q induces an opposite charge -q on the wall of the cavity, which distributes itself in such a way that its field cancels that of q, for all points exterior to the cavity. Since the conductor carries no net charge, this leaves +q to distribute itself uniformly over the surface of the sphere. (It's uniform because the asymmetrical influence of the point charge +q is negated by that of the induced charge -q on the inner surface.) For points outside the sphere, then, the only thing that survives is the field of the leftover +q, uniformly distributed over the outer surface. It may occur to you that in one respect this argument is open to challenge: There are actually three fields at work here: E_q , $E_{induced}$, and $E_{leftover}$. All we know for certain is that the sum of the three is zero inside the conductor, yet I claimed that the first two alone cancel, while the third is separately zero there. Moreover, even if the first two cancel within the conductor, who is to say they still cancel for points outside? They do not, after all, cancel for points inside the cavity. I cannot give you a completely satisfactory answer at the moment, but this much at least is true: There exists a way of distributing -q over the inner surface so as to cancel the field of q at all exterior points. For that same cavity could have been carved out of a huge spherical conductor with a radius of 27 miles or light years or whatever. In that case, the leftover +q on the outer surface is simply too far away to produce a significant field, and the other two fields would have to accomplish the cancellation by themselves. So we know they can do it ... but are we sure they choose to? Perhaps for small spheres nature prefers some complicated threeway cancellation. Nope: As we'll see in the uniqueness theorems of Chapter 3, electrostatics is very stingy with its options; there is always precisely one wayno more—of distributing the charge on a conductor so as to make the field inside zero. Having found a possible way, we are guaranteed that no alternative exists, even in principle. If a cavity surrounded by conducting material is itself empty of charge, then the field within the cavity is zero. For any field line would have to begin and end on the cavity wall, going from a plus charge to a minus charge (Fig. 2.47). Letting that field line be part of a closed loop, the rest of which is entirely inside the conductor (where $\mathbf{E} = \mathbf{0}$), the integral $\oint \mathbf{E} \cdot d\mathbf{l}$ is distinctly positive, in violation of Eq. 2.19. It follows that $\mathbf{E} = \mathbf{0}$ within an empty cavity, and there is in fact no charge on the surface of the cavity. (This is why you are relatively safe inside a metal car during a thunderstorm—you may get cooked, if lightning strikes, but you will not be electrocuted. The same principle applies to the placement of sensitive apparatus FIGURE 2.47 inside a grounded Faraday cage, to shield out stray electric fields. In practice, the enclosure doesn't even have to be solid conductor—chicken wire will often suffice.) **Problem 2.38** A metal sphere of radius R, carrying charge q, is surrounded by a thick concentric metal shell (inner radius a, outer radius b, as in Fig. 2.48). The shell carries no net charge. - (a) Find the surface charge density σ at R, at a, and at b. - (b) Find the potential at the center, using infinity as the reference point. - (c) Now the outer surface is touched to a grounding wire, which drains off charge and lowers its potential to zero (same as at infinity). How do your answers to (a) and (b) change? **Problem 2.39** Two spherical cavities, of radii a and b, are hollowed out from the interior of a (neutral) conducting sphere of radius R (Fig. 2.49). At the center of each cavity a point charge is placed—call these charges q_a and q_b . - (a) Find the surface charge densities σ_a , σ_b , and σ_R . - (b) What is the field outside the conductor? - (c) What is the field within each cavity? - (d) What is the force on q_a and q_b ? FIGURE 2.48 **FIGURE 2.49** (e) Which of these answers would change if a third charge, q_c , were brought near the conductor? ### Problem 2.40 - (a) A point charge q is inside a cavity in an uncharged conductor (Fig. 2.45). Is the force on q necessarily zero?¹¹ - (b) Is the force between a point charge and a nearby uncharged conductor always attractive?¹² ## 2.5.3 Surface Charge and the Force on a Conductor Because the field inside a conductor is zero, boundary condition 2.33 requires that the field immediately *outside* is $$\mathbf{E} = \frac{\sigma}{\epsilon_0} \hat{\mathbf{n}},\tag{2.48}$$ consistent with our earlier conclusion that the field is normal to the surface. In terms of potential, Eq. 2.36 yields $$\sigma = -\epsilon_0 \frac{\partial V}{\partial n}.\tag{2.49}$$ These equations enable you to calculate the surface charge on a conductor, if you can determine \mathbf{E} or V; we shall use them frequently in the next chapter. In the presence of an electric field, a surface charge will experience a force; the force per unit area, \mathbf{f} , is $\sigma \mathbf{E}$. But there's a problem here, for the electric field is discontinuous at a surface charge, so what are we supposed to use: \mathbf{E}_{above} , \mathbf{E}_{below} , or something in between? The answer is that we should use the average of the two: $$\mathbf{f} = \sigma \mathbf{E}_{\text{average}} = \frac{1}{2} \sigma (\mathbf{E}_{\text{above}} + \mathbf{E}_{\text{below}}).$$ (2.50) FIGURE 2.50 . In practice, ire will often irrounded by a Fig. 2.48). The oint. rains off charge your answers to 'ed out from the At the center of ¹¹This problem was suggested by Nelson Christensen. ¹²See M. Levin and S. G. Johnson, Am. J. Phys. **79**, 843 (2011).