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this surface, Where is the energy, then? Is it stored in the field, as Eq. 2.45 seems
to suggest, or is it stored in the charge, as Eq. 2.43 implies? At the present stage
this is simply an unanswerable question: I can tell you what the total energy is,
and I can provide you with several different ways to compute it, but it is imperti-
nent to worry about where the energy is located. In the context of radiation theory
(Chapter 11) it is useful (and in general relativity it is essential) to regard the
energy as stored in the field, with a density

fgE 2 = energy per it volume. - (2.46)

2

But in electrostahcs one could just as well say it is stored in the charge, with a
densny 5pV. The difference is purely a matter of bookkeeping.

(jii) The superposition principle. Because electrostatic energy is quadratic

in the fields, it does not obey a superposition principle. The energy of a compound

system is not the sum of the energies of its parts considered separately—there are
also “cross terms™;

Wa=2 [ Ear =-»~f(E1+E2) dr
=2 [ (B} + B3+ 28y W) ar
=W +Wo+¢e f E -E;dr. (2.47)

For example, if you double the charge everywhere, you quadruple the total energy.

Problem 2.36 Consider two concentric spherical shells, of radii a and b. Suppose
the inrer one carries a charge g, and the outer one a charge —g (both of them
uniformly distributed over the susface). Calculate the energy of this configuration,
(a) using Eq. 2.45, and {b} using Eq. 2.47 and the reszilts of Ex.2.5.

Problem 2.37 Find the interaction energy (g JE; - E, dt in Bq. 2.47) for two point
charges, g) and ¢y, a distance @ apazt. [Hinz: Put g at the origin and g, on the z axds;
use spherical coordinates, and do the » integral first.]

2.5 BCONDUCTORS

2.5.1 | Basic Properties

In an insulator, such as glass or rubber, each electron is on a short leash, attached
to & particular aton. In a metallic conductor, by contrast, one or more electrons
per atom are free to roam. (In liguid conductors such as salt water, it is ions that
do the moving.) A perfect conductor would contain an unlimited supply of free

charges. In real life there are no perfect conductors, but metals come pretty close,
for most purposes.




Chapter 2 Electrostatics

From this definition, the basic electrostatic properties of jdeal conductors

immediately follow:

(i) E = 0 inside a copductor. Why? Because if there were any field, those
free charges would move, and it wouldn’t be electrostatics any more. Hmm ...
that’s hardly a satisfactory explanation; maybe all it proves is that you can’t have

clectrostatics when conductors are present. We had better examine what happens

when you put 2 conductor into an external electric field Eq (Fig. 2.42). Initiatly,
the field will drive any free positive charges {0 the right, and negative ones to the
s—electrons—that do the moving, but

left. (In practice, iU’s the negative charge
when they depart, the right side is left with a net positive charge—the stationary
puclei-—so it doesn’t really matter which charges move; the effect is the same.)
When they come to the edge of the material, the charges pile up: plus on the right
side, minas on the left. Now, these induced charges produce a field of their own,
E, which, as you cat see from the figure, is in the opposite direction O Eg. That’s
the crucial poini, ¢or it means that the Geld of the induced Charges terrds 1o cancel
the original field. Charge will continue to flow until this cancellation is coniplete,
and the resultant field inside the conductor is precisely zera.? The whole process

is practically instantaneous.

(ii} p = 0 inside a conductor.
If E is zexo, so also is p. There iss
minus, so the net charge density in the interiot is zero.

(iii) Any net charge resides on the surface. That’s the only place left.

(iv} A conductor is an equipotential. For if a and b are any two points

within (or at the surface of) a given conductor, V{b) — Viay=— f: E-dA1=0,

and hence V(a) = V(b).
(v)Eis perpendicular to the surface, just outside a conductor. Otherwise,
as in (i), charge will immediately flow around the surface until it kills off the

tangential component (Fig. 2.43). (Perpendicular t© the surface, charge cannot
flow, of course, since it is confined to the conducting object.}

This follows from Gauss’s law: V - E = p/ép.
till charge around, but exactly as much plus as

—_—
Eq

FIGURE 242

9 Qutside the conductor the feid is not zero, for here Ep and By do rot tend to cancel.




ideal conductors

re any field, those
;y more, Hmm ...
hat you can’t have
nine what happens
ig. 2.42). Initially,
egative ones to the
io the moving, but
-ge—the stationary
sffect is the same.)
p: plus on the right
1 field of their own,
ection to Eg. That’s
«ges tends to cancel
lation is complete,
The whole process

taw: V. E = p/en.
:thy as much plus as

aly place left.
are any two points
== PE-d1=0,

tductor. Otherwise,
until it kills off the
face, charge cannot

1 to cancel.

2.5 Conductors 99

Conductor
- E=0

FIGURE 2.43

I think it is astonishing that the charge on a conductor flows to the surface. _
Because of their mutual repulsion, the charges naturally spread out as much as
possible, but for all of them to go to the surface seems like a waste of the interior
space. Surely we could do better, from the point of view of making each charge
as far ag possible from its neighbors, to sprinkle some of them throughout the
volume ... Well, it simply is not s0. You do best to put all the charge on the
surface, and this is true regardless of the size or shape of the conductor. 10

The problem can also be phrased in terms of energy. Like any other free
dynamical system, the charge on a conductor will seek the configuration that
minimizes its potential energy. What property (iii) asserts is that the electrostatic
energy of a solid object (with specified shape and total charge) is a minimum
when that charge is spread over the surface. For instance, the energy of a sphere
is (1/8mep){g?/R) if the charge is uniformly distributed over the surface, as we

found in Ex. 2.9, but it is greater, (3/20meg) (q%/R), if the charge is uniformly
distributed throughout the volume (Prob. 2.34). o :

2.5.2 B Induced Charges

If you hold a charge +4 near an uncharged conductor (Fig. 2.44), the two will -
attract one another. The reason for this is that ¢ will pull minus charges over to
the near side and repel plus charges to the far side. (Another way to think of it
is that the charge moves around in such a way as to kill off the field of g for
points inside the conductor, where the total field must be zero.) Since the negative
induced charge is closer to ¢, there is a net force of attraction. (In Chapter 3 we
shall calculate this force explicitly, for the case of a spherical conductor.)

When I speak of the field, charge, or potential “inside” a conductor, I mean in
the “meat” of the cbnductor; if there is some hollow caviry in the conductor, and

OBy the way, the one- and two-dimensional analegs are quite different: The charge on a conducting
disk does not all go to the perimeter (R. Friedberg, Am. J. Phys. 61, 1084 (3993}, nor does the charge
on a conducting needie go to the ends (D. T. Griffiths and Y. Li, Am., I Phys. 64, 706 (1996))—see -
Prob. 2.56. Moreover, if the exponent of 7 in Coulomb’s law were not precisely 2, the charge on a

solid conductor would not all go to the surface—see I, J. Griffiths and D, Z. Uvanovic, Am. J. Phys. .
69, 435 (2001), and Prob. 2.53g,
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Gaussian
surface

Conductor

FIGURE 2.44 FIGURE 2.45

within that cavity you put some charge, then the field in the cavity will not be 7ET10.
But in a remarkable way the cavity and its contents are electrically isolated from
the outside world by the surrounding conductor (Fig. 2.45). No external fields
penetrate the conductor; they are canceled at the outer swrface by the induced
charge there. Similarly, the field due to charges within the cavity is canceled,
for all exterior points, by the induced charge on the inner surface. However, the
compensating charge left over on the outer surface of the conductor effectively
“communicates” the presence of g to the outside world. The total charge induced
on the cavity wall is equal and opposite to the charge inside, for if we surround the
cavity with a Ganssian surface, all points of which are in the conductor (Fig. 2.45),
55 E - da = 0, and hence (by Gauss’s law) the net enclosed charge must be zero.
But Qene = g + G induced » 50 Ginduced = —¢. Then if the conductor as a whole 1s
electricaily neutral, there must be a charge +4 on its outer surface.

Example 2,10, An uncharged spherical conductor centered at the origin has a
cavity of some weird shape carved out of it (Fig. 2.46). Somewhere within the
cavity is a charge g. Question: What is the ficld outside the sphere?

Conductor

FIGURE 2.46
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Solution
At first glance, it would appear that the answer depends on the shape of the cavity

and the location of the charge. But that’s wrong: the answer is
__1 4
T drep r2?

y

regardless. The conductor conceals from us all information concerning the na-
ture of the cavity, revealing only the total charge it contains. How can this be?

© Well, the charge +¢ induces an opposite charge —g on the wall of the cavity,

which distributes itself in such a way that its field cancels that of g, for all points

exterior to the cavify. Since the conductor carries no net charge, this leaves +-g to Y

distribute itself uniformiy over the surface of the sphere. (It’s uniform because the
asymmetrical influence of the point charge +-g is negated by that of the induced
charge g on the inner surface.) For points outside the sphere, then, the only thing
that survives is the field of the leftover -+-q, uniformly distributed over the outer
surface.

It may occur to you that in one respect this argument is open to challenge:
There are actually three fields at work here: E;, Einduced. 20d E jepover. All we
know for certain is that the sum of the three is zero inside the conductor, yet I
claimed that the first two alone cancel, while the third is separately zero there.
Moreover, even if the first two cancel within the conductor, who is to say they still
cancel for points outside? They do not, after all, cancel for points inside the cavity.
I cannot give you a completely satisfactory answer at the moment, but this much
at least is true: There exists a way of distributing —g over the inner surface so as
to cancel the field of g at all exterior points. For that same cavity could have been
carved out of a huge spherical conductor with a radius of 27 miles or light years or
whatever. In that case, the leftover +¢ on the outer surface is simply too far away
to produce a significant field, and the other two fields would have to accomplish
the cancellation by themselves. So we know they can do it ... but are we sure
they choose to? Perhaps for small spheres nature p;;efczfs some complicated three-
way cancellation. Nope: As we’'ll see in the uniqueness theorems of Chapter 3,
electrostatics is very stingy with its options; there is always precisely one way—

no more—of distributing the charge on a conductor 5o as to make the field inside-

zero, Having found a possible way, we are guaranteed that no alternative exists,
even in principle.

If a cavity surrounded by conducting material is itself empty of charge, then the
field within the cavity is zero. For any field line would have to begin and end on the
cavity wall, going from a plus charge to a minus charge (Fig. 2.47). Letting that
field line be part of a closed loop, the rest of which is entirely inside the conductor
(where E = 0), the integral § E - dl is distinctly pesitive, in violation of Eq. 2.19.
It follows that E = ( within an empty cavity, and there is in fact no charge on the
surface of the cavity. (This is why you are relatively safe inside a metal car during
a thunderstorm—you may get cooked, if lightning strikes, but you will not be
electrocuted. The same principle applies to the placement of sensitive apparatus
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FIGURE 2.47

inside a grounded Faraday cage, to shield out stray electric fields. In practice,
the enclosure doesn't even have to be solid conductor—chicken wire will often
suffice.)

Problem 2.38 A metal sphere of radius R, carrying charge g, 18 surrounded by &
thick concentric metal shell (inner radius a, outer radius b, as in Fig. 2.48). The
sheil carries no net charge.

{(a) Find the surface charge density o at R, at 2, and at b,
{b) Find the potential at the center, using infinity as the reference point.

(¢} Now the outer surface is touched to a grounding wire, which drains off charge
and lowers its potential to zero (same as at infinity). How do your answers to
(a) and (b) change?

| " Problem 2.39 Two spherical cavities, of radii @ and b, are hollowed out from the
interior of a (neutral) conducting sphere of radius R (Fig. 2.49). At the center of
each cavity a point charge is placed—call these charges gq and . ’

(a) Find the surface charge densities ga, Ops and og.
(h) What is the field outside the conductor?
{c) What is the field within each cavity?

(d) What is the force on qo and g4?

FIGURE 248 FIGURE 2.49
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(2) Which of these answers would change if a third charge, g,, were brought near
the conductor?

Problem 2.40

{a) A point charge g is inside a cavity in an uncharged conductor (Fig. 2.45). Is the
force on ¢ necessarily zero?!!

(b) Is the force between a point charge and a nearby uncharged conductor always
attractive?'?

2531 Surface Charge and the Force on a Conductor

Because the field inside a conductor is zero, boundary conchtlon 2. 33 requires that
the field immediately cutside is

~

E = -—n, (2.48)

o
€0,
consistent with our earlier conclusion that the field is normal to the surface. In
terms of potential, Eq. 2.36 yields

av

G = g (2.49)
on

These equations enable you to calculate the surface charge on a conductor, if you
can determine E or V; we shall use them frequently in the next chapter.

In the presence of an electric field, a swrface charge will experience a force;
the force per unit area, f, is oE. But there’s a problem here, for the electric field is
discontinuous at a surface charge, so what are we supposed to use: Egove, Erelow,
or something in between? The answer 18 that we should use the average of the two:

i
f=0cE average EJ{E above + Eﬁeiow)- ) (2.50)

% cley Y

FIGURE 2.50

1 Thig problem was suggested by Nelson Christensen.
12See M. Levin and S. G. Johnson, Am. J. Phys. 79, 843 (2011}




