
Detecting Number of Clusters by Testing Block

Diagonal Behavior of Similarity Matrix

Sharmodeep Bhattacharyya and Peter J. Bickel

Abstract

In cluster analysis, one of the main challenges is the detection of num-
ber of clusters. Most clustering algorithms need the number of clusters to
be specified beforehand. Previously, there has been some work related to
choosing the number of clusters. We propose a new method of selecting
number of clusters, based on hypothesis testing. One way to look at clus-
tering is - getting hold of the most block-diagonal form of the similarity
matrix. So, we test the hypothesis, whether the resulting similarity ma-
trix after clustering is block-diagonal or not. The number of clusters for
which we have the most block diagonal similarity matrix is considered to
be the most suitable number of clusters for the data set. So, the method
can be applied for any optimal partitioning algorithm (like k-means or
spectral clustering). We show that this method works well compared to
currently used methods for both simulated and real data sets.

1 Introduction

Cluster analysis is an important unsupervised classification technique. In clus-
tering, a set of unlabeled patterns, usually vectors in a multidimensional space,
are grouped into clusters in such a way that patterns in same cluster are sim-
ilar in some sense and patterns in different clusters are dissimilar in the same
sense. One of the main approaches of clustering is optimal partitioning algo-
rithms. The first step of optimal partitioning algorithm is choosing the number
of groups or clusters.

The method we have proposed for clustering depends upon exploiting the
structure of the similarity (or distance) matrix after clustering. One way of view-
ing clustering is getting hold of the most block-diagonal form of the similarity
matrix, by simultaneously permuting the rows and columns of the similarity
matrix. In figure 1(a) we have a data set, whose distance matrix is given in
figure 1(b) after permuting the row and columns according to the assignments
obtained from output of k-means algorithm with 2 clusters on the data set. We
see that the matrix in figure 1(b) is block-diagonal in nature. So, our method is
based on the assumption that if the partitioning method is applied with correct
number of clusters, then the resulting similarity (or distance) matrix will have
a better block-diagonal structure.
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(a) (b)

Figure 1: (a) Sample data set (b)Distance matrix after 2-means clustering

Now, we test the ‘block-diagonal-ness’ of a matrix by hypothesis test of loca-
tion shift. We test if there is a location shift between the distances in a diagonal
block with the distances in an off-diagonal block. If there is evidence of location
shift, that means that cluster is well-separated from other clusters. So, it is
also a cluster validation technique, which determines, whether the current clus-
ter under consideration is actually a well-separated cluster from the remaining
clusters. If there is evidence of location shift for all blocks/clusters, then, that
means that number of blocks/clusters is one possible choice for number of clus-
ters. So, we have several possible choices for the number of clusters and this is
expected if we consider Hartigan’s (1985) [6] definition of high-density clusters,
where, depending on the level, the number of disjoint components of the level
set of the density (that means, number of clusters) vary. However, if we have
to specify one number as the number of clusters, we shall prefer the one with
most deviation from the null distribution. Also, note that our method works
for selecting number of clusters for any clustering/partitioning algorithms.

Several Methods have been proposed for choosing the number of clusters
in the literature. Milligan and Cooper (1985) [8] performed a simulation study
comparing different statistical heuristics for choosing number of clusters, among
which the best were by Calinski and Harabasz (1974) [3]:

CH(k) =
B(k)/(k − 1)

W (k)/(n− k)
(1)

where, B(k) and W (k) are the between and within cluster sums of squares with
k clusters. Rousseeuw (1987) citerousseeuw1987sihouettes proposed the cluster
silhouette coefficient

SC(k) =
1

n

n∑
i=1

s(i); s(i) =
b(i)− a(i)

max a(i), b(i)
(2)
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where, For observation i, let a(i) be the average distance to other points in its
cluster, and b(i) the average distance to points in the nearest cluster besides its
own and nearest is defined by the cluster minimizing this average distance. The
k̂ for which SC(k) is maximized is considered the best number of clusters by
this method. Tibshirani et. al. (2001) [12] proposed gap statistic for estimating
the number of clusters. Another popular tool for selecting number of clusters is
using cluster stability, as proposed by Ben-hur et. al. (2001) [1] and Lange et.
al. (2004) [7]. There are also methods for selecting number of clusters through
BIC in model-based clustering as proposed in Fraley and Raftery (1998) [5].
There are many other methods of finding number of clusters in the literature,
but for brevity, we are not mentioning them here.

The paper is arranged as follows. In section 2, we have introduced our
method. In section 3, we have carried out simulation study, showing the efficacy
of our method compared to other methods. In section 4, we have applied our
method to two real-life data sets - an astronomical data set and a microarray
data on leukemia study. In section 5, we have provided the discussion of the
results and the method.

2 Our Method

Let us consider, for data X = (X1, . . . , Xn), where, Xi ∈ Rp, we start with a
distance matrixD = ((dij))

n
i,j=1, where, dij = distance between the observations

Xi and Xj . We also have a clustering/partitioning method, which partitions
the data into clusters, after the number of clusters have been specified. Let us
consider, that for number of clusters, k, the partitioning method partitions the
data into clusters (C1, . . . , Ck), where, Cj ⊂ X for j = 1, . . . , k and ∪jCj = X,
Ci ∩ Cj = φ, for all i 6= j.

Now, if we consider the distance matrix with the row-column entries of the
matrix being ordered according to the clusters, that is, consider the permuta-
tion of the data entries according to the clusters, Xπ = (Xπ(1), . . . , Xπ(n) =
(C1, . . . , Ck). We form the distance matrix Dπ = ((dπij)) from Xπ by dπij = the
distance between Xπ(1) and Xπ(j).

One of the necessary conditions for the matrix Dπ is - it should be ’block-
diagonal’. That means the entries in the diagonal blocks of the matrixDπ should
have a lower values than the value of the entries in the off-diagonal blocks. We
can denote Dπ = ((Dπ

ii′)) as the k × k block matrix, where, Dπ
ii′ is |Ci| × |Ci′ |

matrix containing the distances between the observations in clusters Ci and Ci′ ,
where, i, i′ = 1, . . . , n. So, in ideal case, the entries in Dπ

ii should have lower
values than entries in Dπ

ij , where, i 6= j. We judge whether a clustering is valid
by testing this statement. Also, this is a cluster-wise validation, as for each
cluster (or block), we are testing whether the corresponding diagonal block in
Dπ has smaller values than the corresponding off-diagonal blocks of Dπ.
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2.1 Block Diagonal Hypothesis Testing

We want to test the hypothesis that Dπ has block diagonal structure. We

proceed as follows - for each block Ci (i = 1, . . . , k), consider the |Ci|(|Ci−1)
2

upper diagonal entries of Dπ
ii in the vectorized form (Y1, . . . , Ym), where, m =

|Ci|(|Ci−1)
2 . Now, for each i′ = (i+1, . . . , n), consider the |Ci||Ci′ | entries of Dπ

ii′

in a vectorized form (Z1, . . . , Zm′), where, m′ = |Ci||Ci′ |.
So, we have two data sets Y = (Y1, . . . , Ym) and Z = (Z1, . . . , Zm′) and we

want to find whether Y has smaller values than Z in average. So, we perform
a one-sided location shift test between Y and Z, with the null hypothesis of no
location shift. Now, note that, this is a non-standard location shift test, since,
the data Y and Z are not independent. So, the null distribution of the standard
location shift tests (t-test, Wilcoxon Rank-Sum test etc.) does not hold in this
case. We have to go for a different route to get hold of a null distribution for
the test statistic we use.

2.2 Using Permutation Test

Getting hold of a null or reference distribution for testing cluster structure is
always a challenge, as indicated in Tibshirani et. al. [12]. In this case, let
us consider Tii′ is the test statistic we are using to test for a location shift
between Y and Z. Now, among among all i′ = i + 1, . . . , n, consider Ti the
test statistic Tii′ that is least favorable towards the alternative, for example,
for t-test statistic, Ti = maxi′ Tii′ . Now, the null distribution of this statistic
is difficult to find theoretically. So, we perform permutation test instead. We
permute the row-column entries of the distance matrix Dπ to generate a new
distance matrix Dπ′ and generate the corresponding test-statistic Ti for the
matrix Dπ′ . We, repeat this procedure, to get a null-distribution of the test-
statistic Ti. Using the null distribution, we test for the location shift for ith

cluster.
Now, there is a problem with this approach. The objective of any clustering

algorithm is to find the permutation of the row-column entries of the distance
matrix D, such that, the permuted matrix Dπ has most block-diagonal struc-
ture. So, through permutation, we are not actually finding the null distribution
of Ti for each cluster i. So, we use the p-values generated from the permutation
test to get a coefficient called permutation coefficient as follows - for fixed level
α (usually 0.01) we find the αth quantile, Qi of the ‘null’ distribution of Ti
generated through permutations. Now, we define, for each cluster, the excess
value (evi) as

evi = Qi − Ti (3)

Then, we define the block-diagonal coefficient for the number of clusters k as

BDQ(k) = min
i
evi (4)

The estimated number of clusters k̂ is defined as

k̂ = max
k

BDQ(k) (5)
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Now, k̂ is the most prominent number of clusters. But, there might be other
possible number of clusters for which the partition of the data set makes sense.
So, we also output a list of potential number of clusters. That is done as follows
- let us consider i∗ achieves the minimizer in (4). If the value of Ti∗ is less
than Qi∗ − 1.5IQR, where, IQR is the inter-quartile range of the distribution
of permuted Ti∗ , we call, the corresponding k as a potential cluster number.

Also, if the set of potential clusters is a null set. Then, it implies the lack
of cluster structure, which can mean either that there is only one cluster in the
data or the clustering algorithm is failing to properly cluster the data. So, by
our method, we can also detect one cluster, which many of methods for detecting
cluster number (like silhouette, C-H) fail to find.

2.3 An Example

We apply our method on a very well-known data set - Fisher’s Iris data set [4].
The data set contains 4 measurements for a sample of 150 flowers. There are
3 types of flowers in the data set. The scatter plot based on first 2 types of
measurements in given in figure 2.

Figure 2: Iris Data with 2 dimensions sepal length and width.

We use partitioning around medoid (PAM) as the clustering method. We
use t-test statistic as the statistic for hypothesis testing here. Then, if we use,
our method to choose the number of clusters, then the value of BDQ(k) is
maximized for k = 2. Actually, the only positive values of BDQ come to be
BDQ(2) = 96.5 and BDQ(3) = 7.03. So, we see that by our analysis, k̂ = 2.
However, if we try to find the set of potential number of clusters, then, k = 3
also becomes a potential cluster number, as Qi∗ = −6.27, Ti∗ = −13.3 and
IQR = 2.6 for k = 3. So, we see that we can identify clusters for different
hierarchies according to our method and we know, where to stop. The distance
matrices for k = 2 and k = 3 also gives the proper intuitions.
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(a) (b)

Figure 3: (a) Distance matrix after 2-means clustering (b) Distance matrix after
3-means clustering

3 Simulation Study

For simulation study, we generated data for four different scenarios -

(a) No Cluster : We have generated data uniformly over a unit square in 10
dimensions.

(b) 2, 3, 4, 5 Random Clusters in 7, 8, 9 and 10 dimensions respectively :
We generated clusters centers randomly from N(0, 2I) distribution, such
that, two clusters centers are at least one unit apart. Then, we generated
clusters of size 25 or 50 (randomly chosen) from normal distributions with
mean as cluster centers and identity covariance matrix.

(c) 2 elongated clusters in three dimensions We generated each cluster as fol-
lows: For cluster 1, set x1 = x2 = x3 = t with t taking on 100 equally
spaced values from -.5 to .5 and then Gaussian noise with standard de-
viation .1 is added to each feature. Cluster 2 is generated in the same
way, except that the value 2 is then added to each feature. The result is
two elongated clusters, stretching out along the main diagonal of a three-
dimensional cube.

(d) 2 close and elongated clusters in three dimensions As in the previous sce-
nario, with cluster 2 being generated in the same way as cluster 1, except
that the value 1 is then added to the first feature only.

The scenarios are motivated from Tibshirani and Walther (2005) [11].
We have repeated each experiment 50 times. For scenario (a), we compare

our method with gap statistic. For scenario(b)-(d), we compare our method with
CH, silhouette and stability criterion. The stability method has been adopted
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from Brock et. al. (2008) [2]. We use PAM as the clustering method and t-test
statistic as the statistic for location shift testing. We represent our methods
by BDQ and BDQ.potential. The BDQ.potential lists the number of times a
cluster number becomes a potential candidate for the data set. So, the sum of
the elements in rows of BDQ.potential will not be 50, as each data set can have
more than one potential clusters. The results are provided in table 1 - 4.

Table 1: Number of Clusters for Scenario (a)

k = 1 k = 2 k = 3
gap 38 11 1

BDQ 50 0 0

We can see that for scenario (a) BDQ performs better. For scenario (b), for
number of clusters 3 and 4, BDQ.potential performs best. For the compara-
tively hard scenarios (c) and (d), BDQ and BDQ.potential performs quite well.
Especially, BDQ.potential almost always include the correct number of clusters
within its potential choices.

4 Study on Two Real Data Sets

We apply our method to two real data sets. We compare our method in these
cases with CH, silhouette and stability criterion.

4.1 Leukemia Data

The Leukemia data is obtained from Monti et. al. (2003) [9]. The data is
composed by instances representing diagnosed samples of bone marrow from
pediatric acute leukemia patients, corresponding to six prognostically important
leukemia subtypes - 43 T-lineage ALL; 27 E2A-PBX1; 15 BCR-ABL; 79 TEL-
AML1 and 20 MLL rearrangements; and 64 hyperdiploid > 50? chromosomes.
There are 248 total patients and for each patient the number of attributes is
985.

We use hierarchical clustering method as the clustering algorithm for our
method in this case. The performance of our method on this data set compared
to other methods is given in table 5 -

We see here that BDQ identifies the correct number of clusters. Also, we
see that when we consider the BDQ.potential method, it gives the most infor-
mation about the clustering picture of the data set, since if we see the cluster
membership, after the clustering, one of the classes is spuriously broken and
two classes remain merged to form the 6 clusters for the hierarchical clustering
method considered. So, when, we have seven clusters, we are actually having
all the 6 classes plus a broken part of one class. So, when, BDQ.potential says
that the data potentially also has 7 clusters, it gives insight into the data.
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Table 2: Number of Clusters for Scenario (b)

k = 2 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8
Silhouette 0 48 0 0 0 0 0 2

CH 0 48 1 1 0 0 0 0
Stability 0 47 2 0 0 0 0 1

BDQ 11 39 0 0 0 0 0 0
BDQ.potential 11 39 0 0 0 0 0 0

k = 3 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8
Silhouette 0 25 25 0 0 0 0 0

CH 0 27 23 0 0 0 0 0
Stability 0 27 23 0 0 0 0 0

BDQ 4 30 16 0 0 0 0 0
BDQ.potential 4 40 33 0 0 0 0 0

k = 4 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8
Silhouette 0 11 16 23 0 0 0 0

CH 0 12 18 20 0 0 0 0
Stability 0 17 11 22 0 0 0 0

BDQ 4 24 7 15 0 0 0 0
BDQ.potential 4 35 30 28 0 0 0 0

k = 5 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8
Silhouette 0 5 7 13 25 0 0 0

CH 0 10 10 18 12 0 0 0
Stability 0 10 7 10 23 0 0 0

BDQ 5 26 9 3 7 0 0 0
BDQ.potential 5 31 18 12 17 0 0 0

Table 3: Number of Clusters for Scenario (c)

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8
Silhouette 0 50 0 0 0 0 0 0

CH 0 0 0 7 0 32 3 8
Stability 0 50 0 0 0 0 0 0

BDQ 0 50 0 0 0 0 0 0
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Table 4: Number of Clusters for Scenario (d)

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10
Silhouette 0 4 0 10 2 30 3 1 0 0

CH 0 0 0 0 0 10 2 26 7 5
Stability 0 44 1 5 0 0 0 0 0 0

BDQ 0 11 1 34 4 0 0 0 0 0
BDQ.potential 0 50 14 48 43 0 0 0 0 0

Figure 4: The distance matrix of Leukemia data with the classes arranged TEL-
AML1, T-Lineage ALL, MLL, hyperdiploid, E2A-PBX1, BCR-ABL.

4.2 Astronomy Data

The astronomy data is obtained from Richards et. al. (2011) [10]. The data is
composed by instances representing light sources from sky surveys. The light
sources are composed of 5 types of stars - 191 Classical Capheid, 145 Beta
Lyrae, 114 Delta Scuti, 144 Mira, 58 W Ursae Majoris. There are 652 total
light sources and for each light source the number of features is 64.

The performance of our method on this data set compared to other methods
is given in table 6 -

So, BDQ.potential also performs good in this case and provides a nice insight
to the data. Though number of clusters selected by BDQ is 4 in this case, we
see that, k = 5 is one one of the potential cluster numbers.

5 Discussion

So, we can see that methods of selecting cluster number by testing for block-
diagonality of a matrix works nicely in practice. This method is highly general
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Table 5: Number of Clusters for Leukemia Data

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8
Silhouette 0 0 0 0 0 1 0 0

CH 0 1 0 0 0 0 0 0
BDQ 0 0 0 0 0 1 0 0

BDQ.potential 0 0 0 0 0 1 1 0

Figure 5: The astronomy data in two of its features.

and can be applied in conjunction with any clustering method and any similarity
(or distance) matrix. Also, the method can also provide a list of potential
number of clusters, which is quite suggestive, since, a data set usually can
be considered to have different number of clusters depending on the level of
inspection, we are going to perform on the data set. Also, note that this a
completely non-parametric approach, so it can be applied to quite general class
of models

However, note that this method of selecting number of clusters is dependent
on the performance of the clustering method itself. If the clustering method
does not perform well, then, this method might produce unstable results.

Another issue is selecting the number of permutations. We have generally
considered 1000 permutations to construct the ‘null’ distribution. However, it
might be better to first sequentially test for the p-value 0.01, to see how many
permutations are needed for the sequential rule to stop. Then, we can use a
number of permutations slightly greater than the stopping number, to form the
null distribution.

Lastly, we have not derived any theoretical results for this method. However,
assuming some underlying model space, we can try to prove the consistency
and variance bounds of this method. Considering, gaussian model, we can
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Table 6: Number of Clusters for Astronomy Data

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8
Silhouette 0 0 0 1 0 0 0 0

CH 0 0 1 0 0 0 0 0
BDQ 0 0 0 1 0 0 0 0

BDQ.potential 0 0 0 1 1 0 0 0

easily see that, our procedure of finding location shift is a correct one. However,
theoretically deriving the ‘null’ distribution is a challenge and we wish to address
this issue later on.
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