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AbstractThe goal of this paper is to propose efficient and adaptive
regularized estimators for the nonparametric component, mean and
covariance matrix in both high and fixed dimensional situations. Al-
though, semiparametric estimation of elliptical distribution has also
been discussed in [8], we wish to expand the model in two ways. First,
study adaptive estimation methods with a novel scheme of estimating
the nonparametric component and second, we perform regularized es-
timation of Euclidean parameters of the elliptical distribution such
that high dimensional inference of the Euclidean parameters under
certain additional structural assumption can be carried out. Some
methods have already been developed. But we extend the work in [5]
[6] [10] [18] [19]. The estimate of elliptic densities can also be used
to approximately estimate certain sub-class of log-concave densities
by using results from convex geometry. The problem of estimation
of mixture of elliptical distributions is also important in clustering,
as the level sets produce disjoint elliptical components, which can be
viewed as model of clusters of specific shape high dimensional space.
The regularized estimation of mixture of elliptical distributions will
also lead to an algorithm for finding elliptical clusters in high dimen-
sional space under highly relaxed tail conditions.

1. Introduction. We consider the estimation of semi parametric family
of elliptic distributions for the purpose of data description and classification
(regression and clustering). The class of elliptically contoured or elliptical
distributions provide a very natural generalization of the class of Gaussian
distribution. An elliptical density has elliptic contours like a Gaussian dis-
tribution, but can have either heavier or lighter tails than the Gaussian
density. The class of elliptical distributions is also very attractive for sta-
tistical inference as it has the same location-scale Euclidean parameters as
in Gaussian distribution with an additional univariate function parameter.
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There has been extensive work done on estimation of Euclidean parameters
for elliptical distributions. Adaptive and efficient estimation of the Euclidean
parameters were addressed by Bickel et.al. (1993) [8], Bickel (1982) [4] and
Anderson et al (1986) [1]

It may be argued that semi parametric family is too restrictive and one
instead should focus on the more general family of shape-constrained den-
sities and their mixtures. This are has been heavily studied theoretically
in different contexts since the seminal work of Grenander [23] on nonpara-
metric maximum likelihood estimation of monotone univariate density. In
particular the natural generalization of Gaussian and elliptical families the
log-concave densities and their generalizations have received much attention
(algorithmic [52] [46], theoretical [16] [14] and extensions [34] [2]). However,
for all these problems, estimation of densities in large dimensions become
a computationally challenging problem. The algorithm proposed by Cule
et.al. (2010)[14] Koenker and Mizera [34] works for estimation of multivari-
ate log-concave densities but is too slow to work in large dimensions. So, the
application of such models to clustering and classification are very limited.
That is why, we consider a smaller class of multivariate density functions,
which can be estimated with relative ease for large dimensions.

Semiparametric estimation of elliptic densities for fixed dimension were
first addressed in Stute and Werner (1991) [48] by using kernel density es-
timators for estimating the function parameter. Cui and He (1995) [13] ad-
dressed a similar problem. Liebscher (2005) [38] used transformed data and
kernel density estimators for estimating the unknown function parameter.
Battey and Linton (2012) [3] used finite mixture sieves estimate for the
function parameter by using the scale mixture of normal representation of
consistent elliptic density. ML-Estimation of only the Euclidean parameters
of the elliptical distributions were considered in the work of Tyler [50] and
Kent and Tyler [32]. These works were extended to get shrinkage estimates
of covariance matrix of the elliptical distributions by Chen, Wiesel and Hero
(2011) [12] and Wiesel (2012) [53] with the shrinking being towards iden-
tity, diagonal or given positive-semi-definite matrix. In all of these works
the theoretical properties of the estimators were also addressed. We focus
on maximum likelihood estimation of the elliptic densities using penalized
likelihood functions. The estimation consists of nonparametric estimation of
a univariate function as well as parametric estimation of the location and
scale parameters.

Recently, there has been a general focus on statistical inference in high-
dimensional problems, with examples of high-dimensional data coming from
biology especially genetics and neuroscience, imaging, finance, atmospheric
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science, astronomy and so on. In most of these cases, the number of dimen-
sions of data is nearly of the same order or greater than the number of data
points. So, the appropriate asymptotic framework is as both n → ∞ and
p→∞, where n is the number of data points and p is the dimension of data
points.

Little is possible without some restriction on parameters. In case of re-
gression restrictions are put on regression parameters such as sparsity and
size and on the design matrix such as incoherence and related conditions.
A variety of regularization methods have been studied such as [40] [42] [55]
[7] [11] and effective algorithms proposed such as [17] [41]. A good reference
book on all different forms of regularization and algorithms is Bühlmann and
Van de Geer (2011) [9]. Another problem that has been considered is covari-
ance or precision matrix estimation where again you need regularization if
you has to have consistency as p, n→∞. Again there has been considerable
theoretical work [5] [6] [10] [21] [45] [36] focussing on Gaussian and sub-
Gaussian distributions, except some like [37], which are distribution-free.
However, there has been little focus on tail behavior, except some on sample
covariance matrix behavior [47] [15], although there has been earlier work in
the robustness literature (Chapter 5 of [25], [29]). Here we consider elliptical
distributions, which can have arbitrary tail behavior. For such distributions,
we have attempted to estimate sparse mean and covariance matrices using
penalized likelihood loss function. Thus, we have generalized the class of reg-
ularized covariance estimators, so that estimation of sparse covariance and
precision matrix becomes possible under arbitrary tail behavior of the under-
lying distribution in high-dimensions. We have tried to provide a framework
of semiparametric inference of elliptical distributions for Euclidean param-
eters as well as mixtures.

1.1. Contributions and Outline of the Paper. So, in this paper we have
done the following.

1. We develop estimation procedure for the density generator function of
the elliptical distribution in a log-linear spline form in Section 3 and
derive respective error bounds.

2. We use the estimate of the density generator function of elliptical
distribution to adaptively estimate Euclidean parameters of elliptical
distribution in Section 4. We show how using appropriate regulariza-
tion we can obtain, under conditions similar to those of [7], [45] and
[36], consistent estimates of Euclidean parameters for both fixed di-
mensional case and when p, n→∞ in Section 5.3.

3. Develop feasible algorithms for all these methods in Section 5 and illus-
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trate our method by simulation and one real data example in Section
7 and Section 8.

4. Extend the results to three special cases - (a) Estimation of Covari-
ance and Precision matrix (b) Regression with Elliptical errors and (c)
Clustering via mixtures of elliptical distribution in Section 6.

We give the main definitions and results in Section 2.

2. Elliptical Distributions and Main Results. The formal defini-
tion of elliptically symmetric or elliptical distributions is given in the follow-
ing way in [20] -

Definition 1. Let X be a p-dimensional random vector. X is said to
be ‘elliptically distributed’ (or simply ‘elliptical’) if and only if there exist
a vector µ ∈ Rp, a positive semidefinite matrix Ω ≡ Σ−1 ∈ Rp×p, and a
function φ : R+ → R such that the characteristic function t 7→ φX−µ(t) of
X − µ corresponds to t 7→ φ(tTΣt), t ∈ Rp.

Let X1, . . . , Xn where Xi ∈ Rp are independent elliptically distributed
random variables with density f(·;µ,Ω). Then the density function f(·;µ,Ω)
is of the form

(2.1) f(x;µ,Ω) = |Ω|1/2gp
Ä
(x− µ)TΩ(x− µ)

ä
where θ = (µ,Ω) ∈ Rp(p+3)/2 are the Euclidean mean and covariance param-
eters respectively with µ ∈ Rp and Ω ∈ Rp(p+1)/2 and gp : R+ → R+ is the
infinite-dimensional parameter with the property∫

Rp
gp(x

Tx)dx = 1

R+ = [0,∞). gp is also called the density generator of the elliptical distri-
bution in Rp.

Now, we consider the high-dimensional situation under the additional
structure of sparsity imposed on the Euclidean parameters θ0. We consider
that ||µ0||0= s1 and ||Ω−||0= s2, where, ||·||0 calculates the number of non-
zero entries in the vector or the matrix in vectorized form. Small values of s1

and s2 indicates sparsity. We first consider the high-dimensional case, that
is when we have the dimension of the Euclidean parameters, p, growing with
number of samples, n.

Now, if we define Y = (X − µ)TΣ−1(X − µ), then, by transformation of
variables, Y has the density

(2.2) fY (y) = cpy
p/2−1gp(y) y ∈ R+
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where, cp = πp/2

Γ(p/2) . So, we can now use estimate of fY from the data
Y1, . . . , Yn to get an estimate of the non-parametric component gp. From
here onwards we shall drop the suffix and denote gp by g.

We divide the family of density generators into two different classes -
monotone and non-monotone. The following proposition gives the equiva-
lence between monotone density generator and unimodal elliptical density.

Proposition 2. The density generator gp is monotonically non-increasing
if and only if the elliptical density f with density generator gp is unimodal.
Also the mode of density f is at µ.

Proof. If: If gp is not monotonically increasing, then, there exists a
mode of gp which is not at zero. Let that mode be at ν. By symmetry of f
now f has a mode at all points at in an ellipse around µ whose points are
(ν − µ)TΣ−1(ν − µ). So, f does not remain unimodal anymore. So, if f is
unimodal, then, gp has to be monotonically non-increasing.
Only If: This part is obvious.

So, we divide the class of elliptical densities into two - unimodal and
multimodal. Unimodal elliptical densities have monotone density generator,
where as, multimodal elliptical density has non-monotone density generator.
Examples of unimodal elliptical density include normal, t, logistic distribu-
tions, and examples of multimodal elliptical density include a subclass of
Kotz type and multivariate Bessel type densities. See Table 3.1 (pp. 69) of
[20] for more examples.

Another desirable property of the class of elliptical distributions is con-
sistency.

Definition 3. An elliptical distribution with density fp(·;0p, Ip) and
density generator gp is said to possess consistency property if and only if

∫ ∞
−∞

gp+1

Ñ
p+1∑
i=1

x2
i

é
dxp+1 = gp

( p∑
i=1

x2
i

)
(2.3)

This consistency property of elliptical distributions is quite desirable and
natural, since it ensures that marginal distribution of the elliptical distri-
butions also follow the elliptical distribution with same density generator.
This property becomes indispensable if we go for high-dimensional situa-
tion, since, in high-dimensions, we have to depend on the projection of the
random variable in low-dimensions and if in the low-dimensions, we have a
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different density generator, we can not devise any adaptive estimator. Equiv-
alent conditions for the consistency property is given in Theorem 1 of [31].
We just mention an excerpt of that Theorem in form of Lemma below

Lemma 4 ([31]). Let gp be the density generator for a p-variate random
variable, Xp following elliptical distribution with mean and covariance ma-
trix parameters (0p, Ip). Then, Xp follows consistent elliptical distribution if

and only if Xp
d
= Zp/

√
ξ, where, Zp is a p-variate normal random variable

with parameters (0p, Ip) and ξ > 0 is some random variable unrelated with
p and independent of Zp.

Examples of elliptical distributions with consistency property include mul-
tivariate Gaussian distributions, multivariate t-distributions, multivariate
stable laws and such, where as, examples of elliptical distribution without
consistency property include multivariate logistic distributions. For more
discussion and insight on the issue see [31].

We shall first try to estimate density generator gp with monotonicity con-
straint in Section 3.1. Unimodal elliptical density is more commonly seen in
practice and is easier to handle. We shall only estimate Euclidean parameters
for consistent elliptical distributions in high dimensions.

2.1. Some Notations. For any vector x ∈ Rp, we define,

||x||2 =

Ã
n∑
i=1

x2
i ,

||x||1 =
n∑
i=1

|xi|,

||x||∞ = max{x1, . . . , xn},
||x||0 =

∑
i = 1n1(xi 6= 0)

For any matrix M = [mij ], we write |M | for the determinant of M , tr(M)
for the trace of M , and λmax(M) and λmin(M) for the largest and smallest
eigenvalues of M , respectively. We write M+ = diag(M) for a diagonal
matrix with the same diagonal as M and M− ≡M−M+. We will use ||M ||F
to denote the Frobenius matrix norm and ||M ||≡ λmax(MMT ) to denote the
operator or spectral norm (also known as matrix 2-norm). We will also write
|·|1 for the l1 norm of a vector or matrix vectorized |M |1=

∑
i,j |mij |. ||·||0

calculates the number of non-zero entries in the vector or the matrix in
vectorized form.
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For two numerical sequences an and bn, an = o(bn) means limn→∞
an
bn

= 0
and an = O(bn) means there exists constant C such that an ≤ Cbn for n ≥
N . Also, for two random or numerical sequences Xn and Yn, Xn = oP (Yn)

means that Xn
Yn

P→ 0 and Xn = OP (Yn) means that Xn is stochastically
bounded by Yn, that is, given ε > 0 there exists constant C and integer

N ≥ 1, such that P
[∣∣∣Xn
Yn

∣∣∣ ≤ C] ≤ ε for n ≥ N .

2.2. Main Results. Let X1, . . . , Xn where Xi ∈ Rp are independent ellip-
tically distributed random variables with density f(·;µ0,Ω0), where, Ω0 ≡
Σ0. Then the density function f(·;µ0,Ω0) is of the form

(2.4) f(x;µ0,Ω0) = |Ω0|1/2gp
Ä
(x− µ0)TΩ(x− µ0)

ä
where θ0 = (µ0,Ω0) ∈ Rp(p+3)/2 are the Euclidean mean and inverse co-
variance or precision matrix parameters (Σ0 is the covariance parameter)
respectively with µ0 ∈ Rp and Ω0 ∈ Rp(p+1)/2 and gp : R+ → R+ is the
infinite-dimensional parameter with the property∫

Rp
gp(x

Tx)dx = 1

R+ = [0,∞).
We start with the following assumption -

(A1) Assume that we have an initial consistent estimators µ̂ and Ω̂, such
that, ||µ̂− µ0||2 and ||Ω̂−Ω0||F concentrates to zero with tail bounds
given by functions J1(t, n, p) and J2(t, n, p) such that,

P[||µ0 − µ̂||2> t] ≤ J1(t, n, p)(2.5)

P[||Ω0 − Ω̂||F> t] ≤ J2(t, n, p).(2.6)

For fixed dimensions, we have, ||µ̂ − µ0||F= OP ((ω1(n)) and ||Ω̂ −
Ω0||2= OP ((ω2(n)), where, ω(n)→ 0 as n→∞ with given tail bounds.
For high dimensions, we have, ||µ̂ − µ0||F= OP ((ω1(p, n)) and ||Ω̂ −
Ω0||2= OP ((ω2(p, n)), where, ω(p, n)→ 0 as p, n→∞ with given tail
bounds.

Now, let us consider the high-dimensional situation. So, in this case, the
dimension of Euclidean parameters grows with n. In the high-dimensional
situation we assume the additional structure of sparsity imposed on the
Euclidean parameters θ0 = (µ0,Ω0). Density generator g comes from a con-

sistent family elliptical distributions and so by Lemma 4, Ω
1/2
0 (X − µ0)

d
=
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Zp/
√
ξ. Let us consider the probability density function of Xj to be h

(j = 1, . . . , p) and

H(u) ≡
∫ ∞
u

h(v)dv(2.7)

We consider the following assumptions -

(A2) Suppose that ||Ω−||0≤ s, where, ||·||0 calculates the number of non-zero
entries in the vector or the matrix in vectorized form. Small values of
s indicates sparsity.

(A3) λmin(Σ0) ≥ k > 0, or equivalently λmax(Ω0) ≤ 1/k. λmax(Σ0) ≤ k.
(A4) The function H(t) defined in Eq. (2.7) and J1(t), J2(t) defined in Eq.

(2.5), satisfies the following conditions -

(a) there exists a function σ1(p, n) : N×N→ R+ is defined such that
for constants, c, d > 0, for t = O(σ1(p, n)),

p(c exp(−dt)J1(t, n, p)J2(t, n, p))n → 0 as p, n→∞(2.8)

(b) there exists a function σ2(p, n) : N×N→ R+ is defined such that
for constants, d1, d2, d3 > 0, for t = O(σ2(p, n)),

d1p
2(H(t)J1(t, n, p)J2(t, n, p))n(exp(−nd2t))(d3 exp(−nd3t

2))→ 0 as p, n→∞
(2.9)

Let us consider that we have obtained estimators of the Euclidean pa-
rameters µ̃ and Ω̃ and the nonparametric component ĝ by following the
estimation procedure of the elliptical density in Section 5. Let us consider
first the fixed dimensional situation. So, in this case, the dimension of Eu-
clidean parameters does not grow with n

Theorem 5. Define φp(y) ≡ log(gp) and assume the following regularity
conditions on density generator gp and φp(y): gp is twice continuously dif-
ferentiable with bounded second derivative and derivative φ′ and g′ bounded
away from 0 (from above) and −∞ and

∫
(φ′′)2 <∞. Then, under assump-

tion (A1-A4),

(a) ||µ0 − µ̃||2= OP (σ1(n)).
(b) ||Ω0 − Ω̃||F= Op(σ2(n))

(c) ĝ is an uniform consistent estimator of g with rate Op

ÅÄ
logn
n

ä1/3ã
.

We consider the high-dimensional situation now, that means the num-
ber of dimensions p and the number of samples n both grow. We have the
estimates, µ̃ and Ω̃ as stated in Section 5.
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Theorem 6. Define φp(y) ≡ log(gp) and assume the following regularity
conditions on density generator gp and φp(y): gp is twice continuously dif-
ferentiable with bounded second derivative and derivative φ′ and g′ bounded
away from 0 (from above) and −∞ and

∫
(φ′′)2 <∞. Then, under assump-

tion (A1)-(A4),

(a) ||µ0 − µ̃||2= OP
(√
pσ1(p, n)

)
(b) ||Ω0 − Ω̃||F= OP

(»
(p+ s)σ2(p, n)

)
for ν = O (σ2(p, n)).

(c) ĝ is an uniform consistent estimator of g with rate Op

ÅÄ
logn
n

ä1/3ã
.

We apply the semi parametric inference technique of estimating elliptical
distributions to two parametric inference and one semi-parametric inference
problems -

(a) In Section 6.1, we apply it for robust regularized covariance and pre-
cision matrix estimation in high-dimensions.

(b) In Section 6.2, we apply it for robust regularized regression in high-
dimensions.

(c) In Section 6.3, we apply the semi parametric inference technique of
estimating elliptical distributions to clustering by devising an inference
scheme for mixtures of elliptical distributions.

3. Inference I: Estimation of Density Generator gp. We try to
find a maximum likelihood estimate for the semiparametric elliptical dis-
tribution. The main idea is using non-parametric maximum likelihood esti-
mate (NPMLE) to estimate density generator gp and then use that NPMLE
estimate of gp, to get a likelihood estimate of the Euclidean parameters.
Throughout this section, we shall consider that the Euclidean parameters
θ = (µ,Ω) are given and the dimension of data p is fixed.

We shall propose non-parametric maximum likelihood estimates (NPMLE)
of density generator gp under the monotonicity assumption. This is the most
common situation for elliptical distributions as monotone density generators
gives rise to unimodal elliptical distributions according to Proposition 2. We
shall principally focus on this case. We consider this case in Section 3.1.

3.1. Maximum Likelihood Estimation of Monotone Density Generator.
The likelihood for (θ, g) is

L(θ, g|X1, . . . , Xn) =
n∏
i=1

|Σ|−1/2g
Ä
(Xi − µ)TΣ−1(Xi − µ)

ä
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The log-likelihood is

`(θ, g|X1, . . . , Xn) = −n
2

log|Σ|+
n∑
i=1

log g
Ä
(Xi − µ)TΣ−1(Xi − µ)

ä
Let us start with an ideal case when the Euclidean parameters µ and Σ

are known. Then, the non-parametric likelihood of g in terms of data Yi,
i = 1, . . . , n, obtained by the transformation Yi = (Xi − µ)TΣ−1(Xi − µ)
becomes

L(g|Y ) = (cp)
n

n∏
i=1

Y
p
2
−1

i g (Yi)

The log-likelihood ignoring the constants becomes

`(g|Y ) =
n∑
i=1

ÅÅ
p

2
− 1

ã
log(Yi) + log g (Yi)

ã
So, the NPMLE ĝn can be written as

ĝn = arg max
g

n∑
i=1

ÅÅ
p

2
− 1

ã
log(Yi) + log g (Yi)

ã
= arg max

g

n∑
i=1

(log g (Yi))

Now, g(y) is a monotonically non-increasing function, however, fY (y) as
defined in (2.2), which is the density of Yi’s, is not monotone. But, we can
still formulate the problem as a generalized isotonic regression problem as
done in Example 1.5.7 (pp. 38-39) in Robertson et.al. (1988) [44].

First note that the NPMLE ĝn must be constant on intervals (Y(i−1), Y(i)],

i = 1, . . . , n (Y0 = 0), where Y(i) is the ith order statistic of Yi, and ĝn must
be zero on (Y(n),∞). It follows by observing that if ĝn is not constant on
(Y(i−1), Y(i)], then, we can always construct another estimator g̃n = (Y(i) −
Y(i−1))

−1
∫ Y(i)
Y(i−1)

ĝn(t)dt constant on (Y(i−1), Y(i)] which gives larger likelihood

than ĝn. So, the NPMLE ĝn has to be piecewise constant and left-continuous.
Hence the problem of finding NPMLE boils down to the optimization

problem on
(g1, . . . , gn), where gi = g(Yi) for i = 1, . . . , n. The optimization problem is
defined as

max
(g1,...,gn)

n∑
i=1

log gi(3.1)
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such that

n∑
i=1

cp

∫ Y(i)

Y(i−1)

yp/2−1gidy =
2cp
p

n∑
i=1

gi
(
Y
p/2

(i) − Y
p/2

(i−1)

)
= 1(3.2)

and

g1 ≥ g2 ≥ · · · ≥ gn(3.3)

The above defined optimization problem can be solved in the similar way
as described in Example 1.5.7 of [44] (pp. 38-39) and by following Theorem
1.4.4 of [44] the solution can be written as

ĝi =
p

2cp
min
s≤i−1

max
t≥i

Fn(Y(t))− Fn(Y(s))

Y
p/2

(t) − Y
p/2

(s)

(3.4)

where, Fn is the empirical cumulative distribution function (CDF) of the
data (Y1, . . . , Yn). The NPMLE ĝn is given by

ĝn(y) =

®
ĝi, if Y(i−1) < y ≤ Y(i)

0, otherwise
(3.5)

Note that, the NPMLE ĝn is quite related to the Grenander estimator
[23] of monotonically non-increasing densities. The Grenander estimator is a
piece-wise constant or histogram type density estimate, where the constant
values come from the left-derivative of the least concave majorant of the
empirical CDF function. Similarly, NPMLE ĝn is also a piece-wise constant
or histogram type density generator estimate, where the constant values
come from the left derivative of the least concave majorant of the empirical
CDF plotted against the abscissa of

2cp
p y

p/2 instead of y. Figure 1 gives an
example of the NPMLE ĝn for a simulated small sample case.

The above description of the NPMLE ĝn also provides us with a caution-
ary note while implementing this estimator. The transformation y 7→ 2cp

p y
p/2

highly stretches the abscissa for large values of p, so for numerical imple-
mentation of the algorithm care should be taken so that machine precision
problems does not hurt the computation of the estimator. However, in this
discourse we shall not dwell on these numerical issues. Some thoughts on
this issue is given in Section 7.

The asymptotic properties NPMLE ĝn is provided in Lemma 7. The
asymptotic properties are quite as expected of isotonic regression estimates.
The proof borrows techniques from Groeneboom (1985) [24], Jonker and
Van der Vaart (2002) [30] and Example 3.2.14 of citeMR1385671.
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(a) (b)

Figure 1. (a) Estimated univariate normal density curve using several NPML techniques
(b) Estimated univariate t with 2 degrees of freedom density curve using several NPML
techniques.

Lemma 7. Let g be the monotonically decreasing density generator of the
elliptical distribution and the NPMLE of g is ĝn, whose definition is given
in (3.5). Suppose that g is continuously differentiable on the interval (0,∞)
with derivative g′ bounded away from 0 (from above) and −∞. Then,

(a) For any y > 0, as n→∞,

n1/3 (ĝn(y)− g(y))
w→
∣∣4g(y)g′(y)

∣∣1/3 arg max
h

{
W (h)−

»
cpyp/2−1h2

}
.

(3.6)

where, W is the Wiener process on (0, 1).
(b) For any xn →∞, δn = O

Ä
n−1/3(log n)1/3

ä
, U > xnδn and n→∞

P
ñ

sup
xnδn≤y≤U

Å
n

log n

ã1/3

|ĝn(y)− g(y)| ≥ x
ô
≤ O

Ç
1√
x

å
.(3.7)

so, we have,

sup
xnδn≤y≤U

|ĝn(y)− g(y)| = OP

(Å
log n

n

ã1/3
)
.(3.8)
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(c) For any U > 0, if ||ĝn − g||1=
∫ U
0 |ĝn(y)− g(y)|dy, then, as n→∞

n1/3E||ĝn − g||1→
∫ U

0
|4E|Vy|g′(y)g(y)|dy(3.9)

where, Vy = arg maxh
{
W (h)−

»
cpyp/2−1h2

}
.

Proof. (a) Let us define a stochastic process {ŝn(a) : a > 0} by

ŝn(a) = arg max
s

ß
Fn(s)− 2acp

p
sp/2
™

where the largest value is chosen when multiple maximizers exist. It
is easy to see that ĝn(t) ≤ a if and only if ŝn(a) ≤ t. It follows that,

P

Ñ
n1/3

∣∣∣∣∣g(t)g′(t)

2

∣∣∣∣∣
1/3

(ĝn(t)− g(t)) ≤ x

é
= P (ŝn (g(t) + δn) ≤ t)

where, δn = xn−1/3
∣∣∣g(t)g′(t)2

∣∣∣1/3. By definition,

ŝn(a+ δn) = sup

ß
s ≥ 0 : Fn(s)− 2cp

p
(a+ δn)s is maximal

™
Hence, we can write,

ŝn(a+ δn) = sup

ß
s ≥ 0 :

√
n (Fn(s)− F (s)) +

√
n

Å
F (s)− 2cp

p
(a+ δn)s

ã
is maximal

™
By Hungarian embedding theorem [35],

√
n (Fn(t)− F (t)) = Bn(F (t)) +OP

Ä
n−1/2 log n

ä
where, (Bn, n ∈ N) is a sequence of Brownian bridges, constructed
on the same space as Fn and where, F is the CDF of Y = (X −
µ)TΣ−1(X − µ). So by (2.2),

F ′(t) = f(t) = cpt
p/2−1g(t)

f ′(t) = cpt
p/2−1g′(t) +

cp(p− 2)

2
tp/2−2g(t)

So, the limiting distribution of n1/3(ŝn(a+ δn)− t) will be the same as
limiting distribution of n1/3(sn(a+δn)−t), where, sn(b) is the location
of the maximum of the process

¶
B(F (s)) +

√
n(F (s)− 2cp

p bs
p/2), s ≥ 0

©
and B is a standard Brownian bridge on [0, 1].
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Now, location of the maximum of the processß
B(F (s)) +

√
n(F (s)− 2cp

p
(a+ δn)sp/2), s ≥ 0

™
behaves as n→∞ as the location of maximum of the process®
B(F (t) + f(t)(s− t)) +

√
n(F (t) + f(t)(s− t) +

f ′(t)

2
(s− t)2 − 2cp

p
(a+ δn)sp/2), s ≥ 0

´
Consider, a = g(t), c = −g′(t)

2 and h =
Ä
nc2

a

ä1/3
(s − t), location of

the maximum of above mentioned process behave as location of the
maximum of following process as n→∞

{B(F (t) + f(t)(s− t)) +
√
n(F (t) + f(t)(nc2d/a)−1/3h+

f ′(t)

2
(nc2/a)−2/3h2

−2cp
p

(a+ δn)
Ä
t+ (nc2/a)−1/3h

äp/2
), h ∈ R}

and as n→∞ it is equivalent to the location of the maximum of the
process

{B(F (t) + f(t)(s− t)) +
√
n(F (t) + f(t)(nc2/a)−1/3h+

f ′(t)

2
(nc2/a)−2/3h2

−2cp
p

(a+ δn)

Ç
(p/2)tp/2−1(nc2/a)−1/3h+

Ç
p/2

2

å
tp/2−2(nc2/a)−2/3h2

å
), h ∈ R}

and as n→∞ it is equivalent to the location of the maximum of the
process

{B(F (t) + f(t)(s− t))−
√
n((cp/2)tp/2−1g′(t)(nc2/a)−2/3h2

+(cpδnt
p/2−1(nc2/a)−1/3h), h ∈ R}

Since, a Brownian bridge behaves locally as a Brownian motion in
(0, 1), the limiting distribution of

{W (cpt
p/2−1g(t)(nc2/a)−1/3h)−

√
n(cpt

p/2−1(g′(t)/2)(nc2/a)−2/3h2

+(cpδnt
p/2−1(nc2/a)−1/3h), h ∈ R}

where, W is the Wiener process on (0, 1). Now, by writing the values

of a, c and δn = xn−1/3 (d(t)ac)1/3 and using Brownian scaling, we get
that

{√cpt(p/2−1)/2a2/3(nc2)−1/6W (h)− cpt(p/2−1)a2/3(nc2)−1/6h2

−cpt(p/2−1)a2/3(nc2)−1/6xh, h ∈ R}
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The location of maximum of the above process is equivalent to the
location of maximum of the process{

W (h)−
»
cptp/2−1

Ä
h2 + xh

ä
, h ∈ R

}
Let

V (a) ≡ arg max
h

{
W (h)−

»
cptp/2−1(h− a)2, h ∈ R

}
The, {V (a) − a : a ∈ R} is a stationary process and P(V (a) ≤ t) =
P(V (0) ≤ t− a). So, in summary, as n→∞

P

Ñ
n1/3

∣∣∣∣∣g(t)g′(t)

2

∣∣∣∣∣
−1/3

(ĝn(t)− g(t)) ≤ x

é
= P (ŝn(a+ δn)− t ≤ 0)

→ P (V (−x/2) ≤ 0) = P (2V (0) ≤ x)

and we prove for each y > 0 as n→∞,

n1/3 (ĝn(y)− g(y))
w→
∣∣4g(y)g′(y)

∣∣1/3 arg max
h

{
W (h)−

»
cptp/2−1h2

}
.

(b) Let us use the stochastic process ŝn(a) again for this proof. Now,

ŝn(a) = arg max
s:s≥0

ß
Fn(s)− 2acp

p
sp/2
™

= arg max
h:h≥−δ−1

n t

ß
Fn(t+ δnh)− 2acp

p
(t+ δnh)p/2

™
= arg max

h:h≥−δ−1
n t

ß
Gn(t+ δnh) +

√
n

Å
F (t+ δnh)− F (t)− 2acp

p
(t+ δnh)p/2

ã™
where, Gn(s) =

√
n (Fn(s)− F (s)) and Fn and F are as defined in

part (a). Consider that s ∈ (0, L). So, h ∈ (δ−1
n t, δ−1

n (L − t)). Let us
take a = g(t) + xδn with x > 0 fixed. Now, by Taylor expansion,

F (t+ δnh)− F (t)− 2acp
p

(t+ δnh)p/2

= f(t)δnh+
f ′(t+ ξδnh)

2
δ2
nh

2 − 2cp
p

(g(t) + xδn)(t+ δnh)p/2

= cpt
p/2−1δ2

n

Ç
g′(t)

2
h2 − xh

å
+ rn(h)®

≤ −cδ2
nh

2 − γnxδ2
nh

≥ −dγnδ2
nh

2 − Cxδ2
nh
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for certain c, d > 0 (since, g(t) is monotonically decreasing) indepen-
dent of δn, t, h. γn > 0 is a lower bound for t and γn → 0 and n→∞.
Now, if (ĝn(t)− g(t)) > xδn, then, for any h0 ∈ (−tδ−1

n , 0),

sup
h>0

Ä
Gn(t+ δnh)−

√
nδ2

n(ch2 + γnxh)
ä
≥
Ä
Gn(t+ δnh0)−

√
nδ2

n(dγnh
2
0 + Cxh0)

ä
Choose, h0 ≡ − xC

2dγn
and note that ch2 + γnxh ≥ ch2 for h ≥ 0. So, we

can write,

P
(

sup
t∈(max(δnx/(2dCγn),γn),U)

(ĝn(t)− g(t)) > xδn

)

≤ P
(

sup
t∈(0,U)

Ä
Gn(t+ δnh)−

√
nδ2

nch
2 −Gn(t+ δnh0)

ä
≥
√
nC2δ2

n

x2

4dγn

)

≤
∞∑
j=0

P
(

sup
t∈(0,U),j≤h≤j+1

(Gn(t+ δnh)−Gn(t+ δnh0)) ≥
√
nδ2

n

Ç
cj2 +

x2C2

4dγn

å)
We can define the class of functions

Gn,j =
{
1(((t+ δ′nh

′
0), (t+ δnh)]) : t ∈ (0, U), j ≤ h ≤ j + 1

}
where, δ′n = δn/γn and h′0 = −Cx/(2d) and using Markov inequality
we get that

P
(

sup
t∈(δnx/(2dCγn),L)

(ĝn(t)− g(t)) > xδn

)
≤ const

∞∑
j=0

E||Gn||Gn,j√
nδ2

n(j2 + x2/γn)

Now, using bracketing integral entropy bounds from [51] and γn =
O((log n)−1/3), we get that,

const
∞∑
j=0

E||Gn||Gn,j√
nδ2

n(j2 + x2/γn)
≤

∞∑
j=0

1
√
nδ

3/2
n (j + x)3/2

= o

Ç
1√
x

å
with the last equality coming by taking δn = O(n−1/3) and the RHS
goes to zero forx = xn →∞. Thus, we can combine all the arguments
to get that, for any ε > 0, there exists a xn > 0 for sufficiently large n
with δn = n−1/3 and γn = (log n)−1/3 such that

P
(

sup
xnδn/γn≤t≤U

|ĝn(t)− g(t)| > xδn

)
≤ O

Ç
1√
x

å
< ε

(c) Follows from (a) and arguments of Groeneboom (1985) [24].
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3.1.1. Spline approximation of NPMLE ĝn. In the previous section, we
constructed an isotropic regression based NPMLE ĝn for density generator
g. One of the main problems with NPMLE ĝn is that it is piece-wise constant
and thus discontinuous. This is in general a problem with isotonic estimators.
A number of works has been done to address this issue and obtain isotonic
continuous or smooth estimators. Some of the approaches are - (a) kernel or
spline smoothing of isotonic estimators [22], (b) finding isotonic estimator
for smoothed empirical CDF, (c) kernel and spline fitting with additional
isotonic constraints on the fitted models. For each of these approaches several
different methods have been proposed with proper theoretical justification
for most of them. But there still exist some unanswered questions in this
domain. However, we shall not go into those questions in this discourse. We
present approach (a) version here only.

We have already found the NPMLE ĝn and proved some of its properties
in Lemma 7. Now, consider the density generator

g(y) ≡ exp(φ(y)) and (φ1, . . . , φn) ≡ (φ(Y1), . . . , φ(Yn))(3.10)

and the NPMLE in the form

exp(φ̂n(y)) ≡ ĝn(y) =

®
ĝi, if Y(i−1) < y ≤ Y(i)

0, otherwise

and

φ̂n(y) ≡
®
φ̂i ≡ log(ĝi), if Y(i−1) < y ≤ Y(i)

0, otherwise
(3.11)

Now, consider ϕ(y) to be a twice continuously differentiable monotonically
non-increasing function with bounded second derivative and

(ϕ(Y1), . . . , ϕ(Yn)) ≡ (φ̂1, . . . , φ̂n).

We consider the problem of estimating monotonically decreasing ϕ(y) with
the help of
(φ1, . . . , φn). We have ((Y1, φ1), . . . , (Yn, φn)) as the data and we want to
solve regression problem

φ̂i = ϕ(Yi) + εi, i = 1, . . . , n(3.12)

where, εi are mean zero random variables with variance σ2 and exponentially
decaying tails. Now, we solve the regression problem by finding the monotone
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continuous function ψ(y) which minimizes the penalized least-squares loss
function

L(ψ) =
n∑
i=1

Ä
φ̂i − ψ(Yi)

ä2
+ λ

∫ U

0
(ψ′(t))2dt(3.13)

Note that the true regression function is ϕ(y). We choose the above smooth-
ing spline loss function in order to get a natural linear spline estimate for the
function ϕ(y) and in turn φ(y) on design points (Y1, . . . , Yn) and thus get
a log-linear spline estimate for the density generator gp(y) on design points
(Y1, . . . , Yn).

The algorithm to solve the minimization problem (3.13) was given in [49].
Let us denote the resultant linear spline estimate by ψ̂n(y). So, our estimate
of φ(y) is a linear spline estimate ψ̂(y) of the form

ψ̂n(y) ≡
®
aiy + bi, if Y(i−1) < y ≤ Y(i)

0, otherwise
(3.14)

where, (ai, bi))
n
i=1 are estimated by solving the optimization problem in Eq

(3.13).
Pal and Woodroofe (2007) [43] provided the asymptotic properties of the

estimator φ̂n(y) in the Theorem 2 of their paper [43], which we restate in
following lemma

Lemma 8.

ψ̂(y) = τλ(y) +
ν

n

n∑
i=1

exp(−ν(y − Yi))εi +OP
Ä
n−2/3 log n

ä
ν + exp(−νy(U − y))OP (ν)

(3.15)

uniformly in λ and in y ∈ (0, U) with ν = λ−1/2 and τλ(y) = ϕ(y)+λϕ′′(y)+
o(λ).

Now, we can use the above lemma and some extensions of it based on [43]
to get concentration of ψ̂n(y) for a special case.

Lemma 9. Let λ = O

ÅÄ
logn
n

ä2/3ã
and we minimize loss function in Eq.

(3.13) with the λ considered to get ψ̂(y). Suppose also that φ(y) defined in
Eq. (3.10) is twice continuously differentiable with bounded second derivative
and φ′ bounded away from 0 (from above) and −∞. Then as n → ∞ for
each Yi, for some constants, c1, c2 > 0, we have,

P
[∣∣∣ψ̂n(Yi)− φ(Yi)

∣∣∣ ≥ t] ≤ c1 exp(−c2t).(3.16)
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Proof. From Lemma 8 using λ = O

ÅÄ
logn
n

ä2/3ã
and substituting λ in

Eq. (3.15), we have that, for y ∈ (0, U),

ψ̂(y) = ϕ(y) + o(n−2/3) +
ν

n

n∑
i=1

exp(−n1/3(y − Yi))εi

+νOP
Ä
n−1/3 log n

ä
+OP

Ä
n1/3 exp(−n2/3y(U − y))

ä
ψ̂(y)− ϕ(y) =

ν

n

n∑
i=1

exp(−n1/3(y − Yi))εi

+νOP
Ä
n−1/3 log n

ä
+OP

Ä
n1/3 exp(−n2/3y(U − y))

ä
+ o(n−2/3)

Now, the first term of the RHS has sub-Gaussian concentration with rate
OP (n−1/3) following Hoeffding’s inequality, since εi are iid sub-Gaussian ran-
dom variables. The second term is bounded by ν||Φ̂ − Φ||∞ and o(1/n)ν,
where, Φ̂(y) = 1

n

∑
i:Yi≤y φ̂(Yi) and Φ(y) =

∫ y
0 φ(y). Now, ||Φ̂−Φ||∞ has sub-

Gaussian tails by Marshall’s Lemma and Dvoretsky-Kiefer-Wolfowitz The-
orem [33], we have that, ||Φ̂ − Φ||∞= OP

Ä
(log n/n)2/3

ä
with sub-Gaussian

concentration. So, the second term has sub-Gaussian concentration with
rate OP (n−1/3). The third term is bounded by ν

n exp(−ν(U − y))
∑n
i=1 εi +

ν exp(−νy(U−y)) and thus has sub-Gaussian concentration with rate oP (n−1/3).
Now, (Y1, . . . , Yn) ∈ (0, U). So, given (Y1, . . . , Yn) ∈ (0, U), we have, for

some constants c1, c2 > 0,

P
ñÅ

n

log n

ã1/3 ∣∣∣ψ̂n(Yi)− φ̂(Yi)
∣∣∣ ≥ tô ≤ c1 exp(−c2t

2).(3.17)

From, Lemma 7(b), we have that,

P
ñÅ

n

log n

ã1/3 ∣∣∣exp(φ(Yi))− exp(φ̂(Yi))
∣∣∣ ≥ exp(t)

ô
= O

Ñ
1»

exp(t)

é
.

So, we have,

P
ñÅ

n

log n

ã1/3
Ç

exp(φ(Yi))

exp(φ̂(Yi))
− 1

å
≥ exp(t)

ô
= O

Ñ
1»

exp(t)

é
,

which implies,

P
[
log n

∣∣∣φ(Yi)− φ̂(Yi)
∣∣∣ ≥ C log(exp(t)± 1)

]
= O (exp(−t/2)) ,
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for some constant C > 0. So, for large t > 0, we have, for some constants
c1 > 0 and c2 > 0,

P
[
log n

∣∣∣φ(Yi)− φ̂(Yi)
∣∣∣ ≥ t] = c1 exp(−c2t),

Now, combining the above equation with Eq. (3.17), we get that, for each
Yi and large t,

P
[∣∣∣ψ̂(Yi)− φ(Yi)

∣∣∣ ≥ t] ≤ c1 exp(−c2t),

and thus the Lemma follows.

4. Inference II: Estimation of Euclidean Parameters. The esti-
mation of Euclidean parameters is carried in an iterative fashion. We start
with a consistent estimate of the Euclidean parameters and then by using
the estimate of density generator in Section 3, we try to get better esti-
mates of the Euclidean parameters. In this section, we shall try to devise
the estimation procedure for improving the initial estimate of the Euclidean
parameters.

4.1. Initial Estimates of Euclidean Parameters. We haveX1, . . . , Xn where
Xi ∈ Rp are independent elliptically distributed random variables with den-
sity f(·;µ0,Ω0), where, Ω0 ≡ Σ0. We shall try to give different initial es-
timates of Euclidean parameters for fixed dimension and high-dimensional
cases.

4.1.1. Fixed dimensional case. There is a rich literature on robust esti-
mates of multivariate location and scale parameters. The book by Hampel
et.al. [25] is a good source. We can also use sample mean and covariance
estimates, as they are also consistent estimates of mean and covariance pa-
rameters for the class of Euclidean distributions. We suggest using Stahel-
Donoho robust estimator of multivariate location and scatter [39]. Stahel-
Donoho estimators (µ̂, Σ̂) of (µ0,Σ0) are also weighted mean and covariance
matrix estimators, which are of the form

µ̂ =

∑n
i=1wiXi∑n
i=1wi

(4.1)

Σ̂ =

∑n
i=1wi(Xi − µ̂)(Xi − µ̂)T∑n

i=1wi
(4.2)

where, the weight, wi is a function on “oulyingness” of a data point Xi from
the center (i = 1, . . . , n). See [25] for more details on weight function w.
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From Theorem 1 of [25], we get
√
n consistency of the estimators (µ̂, Σ̂). So,

we have,

√
n|µ̂i − (µ0)i| = OP (1) for all i = 1, . . . , p(4.3)

√
n|Σ̂ij − (Σ0)ij | = OP (1) for all i, j = 1, . . . , p(4.4)

Another alternative is Tyler’s M-estimate of Multivariate scatter given in
[50], which also gives a

√
n consistent estimate of Σ.

4.1.2. High-dimensional case.

(a) Sample mean, thresholded mean or LASSO estimator can be used to
estimate µ

(b) Ledoit-Wolf estimator of covariance and Precision matrix [37], which
gives distribution-free consistent estimators of covariance and precision
matrix in high-dimensions as p, n → ∞ or graphical lasso estimators
[21] can be used to estimate covariance, Σ and precision matrix, Ω.

4.2. Estimation of Density Generator Using Estimates µ̂n and Σ̂n. The
difference between the approach in Section 3 and this one is that Yi =
(Xi − µ)TΣ−1(Xi − µ) is replaced by Ŷi = (Xi − µ̂n)T Σ̂−1

n (Xi − µ̂n). But, if
we use Ŷi instead of Yi in finding the estimate of gp(y), then, we shall show
that we have a new rate of convergence depending on behavior of ||Ω− Ω̂||
and ||µ− µ̂||.

Lemma 10. Under conditions of Lemma 9 and φ′ being bounded and

P[||µ− µ̂||2> t] ≤ J1(t, n, p)

P[||Ω− Ω̂||F> t] ≤ J2(t, n, p).

Then as n→∞, for some constants c, d > 0

P
[∣∣∣φ̂n(Ŷi)− φ(Yi)

∣∣∣ > t
]
≤ c exp(−dt)J1(t, p, n)J2(t, p, n)(4.5)

Proof. Let us consider φ̂(µ̂,Ω̂) as the estimate of log-density generator

using (Ŷi)
n
i=1 as the data and φ̂(µ,Ω) as the estimate of log-density generator

using (Yi)
n
i=1 as the data. By applying Lemma 7 and 9, we get, for some

constants, k1, k2, k3, k4 > 0,

P
[∣∣∣φ̂(µ̂,Ω̂)(Ŷi)− φ(µ̂,Ω̂)(Ŷi)

∣∣∣ ≥ t] ≤ k1 exp(−k2t)

P
[∣∣∣φ̂(µ,Ω)(Yi)− φ(µ,Ω)(Yi)

∣∣∣ ≥ t] ≤ k3 exp(−c4t)
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Now, φ̂n(Ŷi) ≡ φ̂(µ̂,Ω̂), we want to prove, that for some constants c, d > 0,

P
[∣∣∣φ̂(µ̂,Ω̂)(Ŷi)− φ(Yi)

∣∣∣ > t
]
≤ c exp(−dt)

Now, ∣∣∣φ̂(µ̂,Ω̂)(Ŷi)− φ(µ,Ω)(Yi)
∣∣∣ ≤ ∣∣∣φ̂(µ̂,Ω̂)(Ŷi)− φ(µ̂,Ω̂)(Ŷi)

∣∣∣
+
∣∣∣φ̂(µ,Ω)(Yi)− φ(µ,Ω)(Yi)

∣∣∣
+
∣∣∣φ(µ̂,Ω̂)(Ŷi)− φ(µ,Ω)(Yi)

∣∣∣
Since, we already have bounds for first and second term, we only have to
bound the third term. Now,(
φ(µ̂,Ω̂)(Ŷi)− φ(µ,Ω)(Yi)

)
= φ

Ä
(Xi − µ̂)T Ω̂(Xi − µ̂)

ä
− φ
Ä
(Xi − µ)TΩ(Xi − µ)

ä
≤ |φ′|

Ä
(Xi − µ̂)T Ω̂(Xi − µ̂)− (Xi − µ)TΩ(Xi − µ)

ä
(Xi − µ)TΩ(Xi − µ) = (Xi − µ̂+ µ̂− µ)TΩ(Xi − µ̂+ µ̂− µ)

= (Xi − µ̂)TΩ(Xi − µ̂) + 2(Xi − µ̂)TΩ(Xi − µ̂) + (µ− µ̂)TΩ(µ− µ̂)

= (Xi − µ̂)T Ω̂(Xi − µ̂) + (Xi − µ̂)T (Ω− Ω̂)(Xi − µ̂)

+2(Xi − µ̂)TΩ(Xi − µ̂) + (µ− µ̂)TΩ(µ− µ̂)

So, from the assumptions on the estimators µ̂ and Ω̂ and if φ′ is bounded,
we get that for some constant k5, k6 > 0,

P
[∣∣∣φ(µ̂,Ω̂)(Ŷi)− φ(µ,Ω)(Yi)

∣∣∣ ≥ t] ≤ k5 exp(−k6t)J1(p, n, t)J2(p, n, t)

and so the lemma follows.

4.3. Maximum Likelihood Estimation of µ and Ω. From the Section 4.2,
we have the data in the form Ŷi ≡ (Xi− µ̂)T Ω̂(Xi− µ̂), which we use to get
an estimate of the density generator function gp in a log-linear spline form
like in Eq(3.14) in Section 3.1.1. So, the linear spline estimate of log g takes
the form

ˆlog gp(x) = −
n−1∑
i=1

(aix+ bi)1
Ä
(Ŷ(i), Ŷ(i+1)]

ä
− (an+1x+ bn+1)1

Ä
(Ŷ(n), Ŷ(n+1))

ä
(4.6)

where, Ŷ(i) is the ith order statistic for {Ŷi}n+1
i=0 with Ŷ0 ≡ −∞ and Ŷn+1 ≡ ∞

and (ai, bi)
n
i=1 as define in Eq. (3.14).
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Now, if we define Yi = (Xi − µ)TΩ(Xi − µ), then, the likelihood function
of θ = (µ,Ω) given data (X1, . . . , Xn) and density generator gp becomes -

L(θ|Y , gp) =
n∏
i=1

|Ω|1/2gp
Ä
(Xi − µ)TΩ(Xi − µ)

ä
=

n∏
i=1

|Ω|1/2gp(Yi)(4.7)

and the log-likelihood function of θ = (µ,Ω) given data (X1, . . . , Xn) and
density generator gp becomes -

`(θ|Y , gp) =
n

2
log|Ω|+

n∑
i=1

log gp(Yi)

Now, we can plug-in the a variant of estimate of log gp from Eq (4.6), in the
form

˜log gp(x) = −
n−1∑
i=1

(aix+ bi)1
Ä
(Y(i), Y(i+1)]

ä
− (an+1x+ bn+1)1

Ä
(Y(n), Y(n+1))

ä
where, Y(i) is the ith order statistic for {Yi}n+1

i=0 with Y0 ≡ −∞ and Yn+1 ≡ ∞
and plug in ˜log gp in place of log gp, to get the approximated log-likelihood
- Then, we can write

`(θ|X) =
n

2
log|Ω|−

n∑
i=1

ai
Ä
(Xi − µ)TΩ(Xi − µ)

ä
+ Constant

=
n

2
log|Ω|−tr (S∗Ω) + Constant

where, S∗ =
∑n
i=1 ai(Xi − µ)(Xi − µ)T . By maximizing the approximated

log-likelihood ˜̀(θ) -

˜̀(θ|X) =
n

2
log|Ω|−tr (S∗Ω)(4.8)

we will get estimates of µ and Ω as

(µ̃, Ω̃) = arg max
µ,Ω�0

˜̀(µ,Ω)(4.9)

which we call robust regularized estimators of Euclidean parameters.
See beginning of Section 2 for the notation.
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4.3.1. Penalized ML Estimation of µ and Ω: High-dimensional Case. Now,
we consider the high-dimensional situation under the additional structure of
sparsity imposed on the Euclidean parameters θ0. We consider that ||Ω−||0=
s, where, ||·||0 calculates the number of non-zero entries in the vector or the
matrix in vectorized form. Small values s indicates sparsity. In the high-
dimensional case, we have the dimension of the Euclidean parameters, p,
growing with number of samples, n. We consider the penalized approxi-
mated log-likelihood function under assumption of sparsity to be

˜̀(µ|X) = −
n∑
i=1

ai(Xi − µ)T (Xi − µ)(4.10)

˜̀(Ω|X, µ̃) =
n

2
log|Ω|−tr (S∗Ω) + ν|Ω−|1(4.11)

where, S∗ ≡∑n
i=1 ai(Xi − µ̃)T (Xi − µ̃) and

µ̃ = arg max
µ

˜̀(µ)(4.12)

Ω̃ = arg max
Ω�0

˜̀(Ω)(4.13)

are the robust regularized estimators of Euclidean parameters. See Sec-
tion 2.1 for the notation.

Note that, if we had known Ω or if the proper form of elliptic density was
known, we could have used penalization in the mean parameter too. So, if
Ω is known, then, the penalized likelihood for µ becomes -

˜̀(µ|X) =
n∑
i=1

−ai(Xi − µ)T (Xi − µ) + ν1||µ||1(4.14)

(4.15)

and the penalized likelihood estimate, µ̃ is

µ̃ = arg max
µ

˜̀(µ)(4.16)

5. Inference III: Combined Approach and Theory. Now, we can
summarize the estimation procedure based on the steps suggested in Section
3 and 4. We shall provide the estimation procedure in this section and we
shall provide the theoretical justification for the method.

Let X1, . . . , Xn where Xi ∈ Rp are independent elliptically distributed
random variables with density f(·;µ0,Ω0), where, Ω0 ≡ Σ0. Then the density
function f(·;µ0,Ω0) is of the form

(5.1) f(x;µ0,Ω0) = |Ω0|1/2gp
Ä
(x− µ0)TΩ(x− µ0)

ä



ADAPTIVE ESTIMATION IN ELLIPTICAL DISTRIBUTIONS 25

where θ0 = (µ0,Ω0) ∈ Rp(p+3)/2 are the Euclidean mean and inverse covari-
ance parameters (Σ0 is the covariance parameter) respectively with µ0 ∈ Rp
and Ω0 ∈ Rp(p+1)/2 and gp : R+ → R+ is the infinite-dimensional parameter
with the property ∫

Rp
gp(x

Tx)dx = 1

R+ = [0,∞).

5.1. Fixed Dimension Case. We first consider the fixed dimensional case,
that is when we do not have the dimension of the Euclidean parameters, p,
not growing with number of samples, n. The estimation steps are as follows
-

(1) Assume that we have an initial consistent estimators µ̂ and Ω̂, such
that, ||µ̂− µ0||2 and ||Ω̂−Ω0||F concentrates to zero with tail bounds
given by functions J1(t, n, p) and J2(t, n, p) such that,

P[||µ0 − µ̂||2> t] ≤ J1(t, n, p)

P[||Ω0 − Ω̂||F> t] ≤ J2(t, n, p).

So, we have, ||µ̂ − µ0||F= OP ((ω1(n)) and ||Ω̂ − Ω0||2= OP ((ω2(n)),
where, ω(n)→ 0 as n→∞ with given tail bounds.
There is a rich literature on robust estimates of multivariate location
and scale parameters. The book by Hampel et.al. [25] is a good source

(2) Define Ŷi = (Xi−µ̂)T Ω̂(Xi−µ̂) and based on (Ŷ1, . . . , Ŷn), we construct
the Grenander type estimator ĝn(y) of the density generator gp from
the equation (3.5). If gp is monotone, we get an isotonic linear spline

estimate of φ(y), where, exp(φ(y)) ≡ gp(y), in the form of ψ̂(y), defined
by the equation (3.14).

(3) Use the slope estimates of the linear spline estimators φ̂n or ψ̂n, to get
an approximated log-likelihood loss function, ˜̀(θ) for the Euclidean
parameters θ, given by equation (4.8)

˜̀(θ|X) =
n

2
log|Ω|−tr (S∗Ω) .

where, S∗ =
∑n
i=1 ai(Xi−µ)(Xi−µ)T . We maximize ˜̀(θ) with respect

to θ, to get the robust estimates of θ0.
(4) (Optional) We can use the estimates to obtained in Step 4 and repeat

Steps 1-3, to get an estimate of gp. But, both in theory and practice,
that does not improve the error rates of the new estimate of gp.
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5.2. High-dimensional Case. Now, we consider the high-dimensional sit-
uation under the additional structure of sparsity imposed on the Euclidean
parameters θ0. We consider that ||Ω−||0= s, where, ||·||0 calculates the num-
ber of non-zero entries in the vector or the matrix in vectorized form. Small
value of s indicates sparsity. We first consider the high-dimensional case,
that is when we have the dimension of the Euclidean parameters, p, growing
with number of samples, n. The estimation steps are as follows -

(1) Assume that we have an initial consistent estimators µ̂ and Ω̂, such
that, ||µ̂ − µ0||2 and ||Ω̂ − Ω0||F concentrates around zero with tail
bounds given by functions J1(t, n, p) and J2(t, n, p) such that,

P[||µ0 − µ̂||2> t] ≤ J1(t, n, p)

P[||Ω0 − Ω̂||F> t] ≤ J2(t, n, p).

So, we have, ||µ̂−µ0||F= OP ((ω1(p, n)) and ||Ω̂−Ω0||2= OP ((ω2(p, n)),
where, ω(p, n)→ 0 as p.n→∞ with given tail bounds.
There is a rich literature on robust estimates of multivariate location
and scale parameters. The book by Hampel et.al. [25] is a good source

(2) Define Ŷi = (Xi−µ̂)T Ω̂(Xi−µ̂) and based on (Ŷ1, . . . , Ŷn), we construct
the Grenander type estimator ĝn(y) of the density generator gp from
the equation (3.5). If gp is monotone, we get an isotonic linear spline

estimate of φ(y), where, exp(φ(y)) ≡ gp(y), in the form of ψ̂(y), defined
by the equation (3.14).

(3) Use the slope estimates of the linear spline estimators φ̂n or ψ̂n, to
get an approximated penalized log-likelihood loss function, ˜̀(θ) for the
Euclidean parameters θ under sparsity assumptions, given by equation
(4.10)

˜̀(µ|X) =
n∑
i=1

ai(Xi − µ)T (Xi − µ)

˜̀(Ω|X, µ̃) =
n

2
log|Ω|−tr (S∗Ω) + ν|Ω−|1

where, S∗ ≡∑n
i=1 ai(Xi − µ̃)T (Xi − µ̃) and

µ̃ = arg max
µ

˜̀(µ)

Ω̃ = arg max
Ω

˜̀(Ω)

are the robust regularized estimators of Euclidean parameters of θ0.
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Note that, if we had known Ω or if the proper form of elliptic density
was known, we could have used penalization in the mean parameter
too. So, if Ω is known, then, the penalized likelihood for µ becomes -

˜̀(µ|X) = −
n∑
i=1

ai(Xi − µ)T (Xi − µ) + ν1||µ||1

and the penalized likelihood estimate, µ̃ is

µ̃ = arg max
µ

˜̀(µ)

The likelihood optimization problems are convex optimization prob-
lems and have been the focus of much study in statistical and opti-
mization literature. One way of solving the optimization problem for
µ is by using LARS algorithm of [17]. The optimization problem for
Ω can be solved by using the graphical LASSO algorithms provided in
[21], [54] and [28].

(4) (Optional) We can use the estimates to obtained in Step 4 and repeat
Steps 1-3, to get an estimate of gp. But, both in theory and practice,
that does not improve the error rates of the new estimate of gp.

In Section 5.3, we give proof of Theorem 6, by which we show that reg-
ularized estimators of the Euclidean parameters θ in the high-dimensional
case is also robust to tail behavior of the underlying elliptical distribution.

5.3. Theory. We have described the estimation procedure of the Eu-
clidean parameters and the non-parametric component of the elliptical den-
sity in Section 5.2. We now try to show that the estimators have nice be-
havior in the case of fixed and high dimension. The main theorem in this
section is Therem 5 and Theorem 6given in Section 2.2. However, to prove
the Theorems we first need to discuss the setup and the conditions.

We have X1, . . . , Xn where Xi ∈ Rp are independent elliptically dis-
tributed random variables with density f(·;µ0,Ω0), where, Ω0 ≡ Σ0. Then
the density function f(·;µ0,Ω0) is of the form

(5.2) f(x;µ0,Ω0) = |Ω0|1/2gp
Ä
(x− µ0)TΩ(x− µ0)

ä
where θ0 = (µ0,Ω0) ∈ Rp(p+3)/2 are the Euclidean mean and inverse covari-
ance parameters (Σ0 is the covariance parameter) respectively with µ0 ∈ Rp
and Ω0 ∈ Rp(p+1)/2 and gp : R+ → R+ is the infinite-dimensional parameter.
We shall also consider that gp possess consistency property.
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Now, according to the consistency condition of Elliptical distribution
mentioned in Lemma 4, for independent random variables (ξ1, . . . , ξn) with

ξi
d
= ξ, ∀i,

(
√
ξ1Ω

1/2
0 (X1 − µ0), . . . ,

√
ξnΩ

1/2
0 (Xn − µ0))

d
= (Z1, . . . , Zn)

where, (Z1, . . . , Zn) are independent p-variate standard Gaussian random

variables. If we define, Wi ≡ Ω
1/2
0 (Xi − µ0), then,

(
√
ξ1W1, . . . ,

√
ξnWn)

d
= (Z1, . . . , Zn)(5.3)

Now, according to the estimation procedure we have proposed, after the
estimation of the density generator by a log-lear spline, according to log-
likelihood equation Eq (4.7), the resulting log-likelihood for θ becomes of
the form

`(θ|X) =
n

2
log|Ω|−

n∑
i=1

ai
Ä
(Xi − µ)TΩ(Xi − µ)

ä
+ Constant

which is like the log-likelihood if estimated density f̂ with parameters (µ0,Ω0)
which has the form -

f̂(X1, . . . , Xn|θ0) = C|Ω|1/2exp

(
−

n∑
i=1

ai(Xi − µ0)TΩ0(Xi − µ0)

)
.

that means that as if the data Wi ≡ Ω
1/2
0 (Xi − µ0) has the following distri-

butional form -

(
√
a1W1, . . . ,

√
anWn)

d
= (Z1, . . . , Zn)

So, we can see that by our estimation of the non-parametric component,
we have got an estimate of the latent scale variable ξ inherent to the consis-
tent elliptical distribution. Our results on rate will thus depend on the tail
behavior of ξ.

We wish to prove the Theorem 6 and Theorem 5 now. Recall the as-
sumptions (A1)-(A5) given in Section 2.2, which preceded Theorem 6 and
Theorem 5.

Before proving Theorem 6, we shall state and prove two lemma on con-
centration inequalities which are vital for the proof of Theorem 6. Lemma
11 is variant of the Lemma B.1 of [7]. Lemma 12 is variant of the Lemma 3
of [5] or Lemma 1 of [45].

Concentration inequality around the mean parameter µ0 will be goal of
our first Lemma.
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Lemma 11. Let Xi be i.i.d elliptically distributed random variables hav-
ing elliptic distribution with parameters (µ0,Ω0) and ai’s are as stated in
Eq. (5.3) and Ω be an estimate of Ω0 satisfying Assumption (A2). Then,

P
[
max
j

n∑
i=1

√
ai|(Ω1/2

0 (Xi − (µ0)))j |> 2nt

]
≤ p(c exp(−dt)J1(t, n, p)J2(t, n, p))n

(5.4)

where, c, d are some constants.
So, the rate of convergence is controlled by σ1(p, n), which is the function

such that the above inequality satisfies if we replace t = O(σ1(p, n))

Proof. We have (
√
ξiΩ

1/2
0 (Xi − µ0)

d
= Zi ∼ N(0p, Ip). So, we have, by

Gaussian tail inequality

P
î
ξi(Xi − (µ0))TΩ0(Xi − µ0) > t2

ó
≤ c1 exp(−c2t

2)

From Lemma 9 and Lemma 10, we have that,

P
î
(ai − ξi)(Xi − (µ0))TΩ0(Xi − µ0) > t2

ó
≤ (k1 exp(−k2t

2)J1(t2, n, p)J2(t2, n, p))

Combining the above two equations, we have for some constants c3, c4 > 0,

P
î
ai(Xi − (µ0))TΩ0(Xi − µ0) > t2

ó
≤ c3 exp(−c4t

2)J1(t2, n, p)J2(t2, n, p)

⇒ P
[√
ai|(Ω1/2

0 (Xi − (µ0)))j |> t
]
≤ c3 exp(−c4t)J1(t, n, p)J2(t, n, p)

So, we get that,

P
[
n∑
i=1

√
ai|(Ω1/2

0 (Xi − (µ0)))j |> nt

]
≤ (c3 exp(−c4t)J1(t, n, p)J2(t, n, p))n

P
[
max
j

n∑
i=1

√
ai|(Ω1/2

0 (Xi − (µ0)))j |> 2nt

]
≤ p(c3 exp(−c4t)J1(t, n, p)J2(t, n, p))n

Let us consider that σ1(p, n) to be the function such that the above inequality
satisfies if we replace t = O(σ1(p, n)).

So, we can see that depending on the behavior of H1(t), either H1(t) or
exp(−c2t

2) controls the rate in the above Lemma.
Concentration inequality around the covariance matrix parameter Σ0 will

be goal of our next Lemma.
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Lemma 12. Let Xi be i.i.d elliptically distributed random variables hav-
ing elliptic distribution with parameters (µ0,Σp) and ai’s are as stated in
Eq. (5.3) and Ωp ≡ Σ−1

p . We also have, λmax(σp) ≤ k < ∞. Then, if
(Σp)ab = σab,

(5.5) P
[
max
j 6=k

n∑
i=1

|aiŴijŴik − (Σ0)jk|> nt

]
≤ d1p

2(H(t)J1(t)J2(t))n(exp(−nd2t))(exp(−nd3t
2)) for |t|≤ δ

where, µ̂ is an of µ0, d1, d2, d3 and δ depend on k only.
So, the rate of convergence is controlled by σ2(p, n), which is the function

such that the above inequality satisfies if we replace t = O(σ2(p, n)).

Proof. Consider Wi = Xi − µ0 and Ŵi = Xi − µ̂ for i = 1, . . . , n. We

have Ω
1/2
0

√
ξiWi

d
= Zi ∼ N(0p, Ip). So, we have, by Lemma 3 of [5], for

|t|≤ δ, for some constants c1, c2 > 0,

P
[
n∑
i=1

|ξiWijWik − (Σ0)jk|> nt

]
≤ c1 exp(−nc2t

2)(5.6)

We have ai > 0 and ξi > 0. Now,

|aiWijWik − ξiWijWik|≤ |ai||Wi||22−ξi||Wi||22|.
|WijWik|∑

jW
2
ij

≤ |ai||Wi||22−ξi||Wi||22|

Since, ai from φ̂ is the slope estimate of the log density generator φ, whose
slope is ξ, conditional on ξ. So, we have from Lemma 9 and Lemma 10 for
c3, c4 > 0, that,

P
î
|ai||Wi||22−ξi||Wi||22|> t

ó
≤ c3 exp(c4t)J1(t, n, p)J2(t, n, p)

which implies,

P [|aiWijWik − ξiWijWik|> t] ≤ c3 exp(c4t)J1(t)J2(t)(5.7)

Now,

|aiŴijŴik − aiWijWik| ≤ ai |−Xij(µ̂k − (µ0)k)−Xik(µ̂j − (µ0)j) + (µ̂jµ̂k − (µ0)j(µ0)k)|

So, we have, for some constants, c5, c6 > 0,

P
î
|aiŴijŴik − aiWijWik|> t

ó
≤ H(t)c5 exp(c6t)(5.8)
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So, combining the above equations (5.6) (5.7) and (5.8), for constants d1, d2, d3 >
0, we get that,

P
[
n∑
i=1

|aiŴijŴik − (Σ0)jk|> 3nt

]
≤ d1(H(t)J1(t)J2(t))n(exp(−nd2t))(d3 exp(−nd3t

2))

P
[
max
j 6=k

n∑
i=1

|aiŴijŴik − (Σ0)jk|> 3nt

]
≤ p(p− 1)d1(H(t)J1(t)J2(t))n(exp(−nd2t))(exp(−nd3t

2))

Let us consider that σ2(p, n) to be the function such that the above inequality
satisfies if we replace t = O(σ2(p, n)).

So, we can see that depending on the behavior of H(t), J1(t), J2(t) and
these rates along with exp(−c2t

2) controls the rate in the above Lemma.

5.3.1. Proof of Theorem 6.

(a) We consider

Q(µ) =
n∑
i=1

ai(Xi − µ)TΩ0(Xi − µ)−
n∑
i=1

ai(Xi − µ0)TΩ0(Xi − µ0)

Our estimate µ̃ given in Eq. (4.12) minimizes Q(µ) or equivalently
δ̂ = µ̃ − µ0 minimizes G(δ) ≡ Q(µ0 + δ) given an estimate Ω of Ω0.
Consider the set

Θn(M) = {δ : ||δ||2= Mrn}

where,

rn =
√
pO(σ1(p, n))→ 0

where, σ1(p, n) is taken from statement of Lemma 11. Note that G(δ)
is a convex function and

G(δ̂) ≤ G(0) = 0

Then, if we can show that

inf{G(δ) : δ ∈ Θ(M)} > 0
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then the minimizer δ̂ must be inside the sphere Θn(M) and hence

||δ̂||2≤Mrn

Now,

n∑
i=1

ai(Xi − µ)TΩ0(Xi − µ)

=
n∑
i=1

ai(Xi − µ0)TΩ0(Xi − µ0) + 2
n∑
i=1

ai(Xi − µ0)TΩ0(µ0 − µ)

+
n∑
i=1

ai(µ0 − µ)TΩ0(µ0 − µ)

So,

G(δ) = 2
n∑
i=1

ai(Xi − µ0)TΩ0δ +
n∑
i=1

aiδ
TΩ0δ

Now, by applying Cauchy-Scwartz inequality and Lemma 11, and ā1 =∑n
i=1
√
ai and ā2 =

∑n
i=1 ai, we get that,

G(δ) ≥ −2
n∑
i=1

√
aiσ1(p, n)||Ω1/2

0 δ||2+
n∑
i=1

aiδ
TΩ0δ

≥ −2ā1M
√
s(σ1(p, n))2 + ā2kM

2s(σ1(p, n))2

≥ ā2(1/(k + oP (1)))M2s(σ1(p, n))2 − 2ā1M
√
s(σ1(p, n))2

> 0

for large enough M > 0. So, for large enough M > 0,

G(δ) > 0

So, our proof follows.
(b) The proof closely follows proof of Theorem 1 in [45]. We do not repeat

the proof as essentially the same proof follows. The only difference are

(i) Take S∗ in stead of Σ̂ in the whole proof.

(ii) Take rn =
√
p+ sO(σ2(p, n)) → 0, where,σ2(p, n) is taken from

statement of Lemma 12

(iii) Use Lemma 12 instead of Lemma 1 after the equations (12) and
(13) of the proof.

(iv) Use regularization parameter ν2 = C1
ε O(σ2(p, n)), where, σ2(p, n)

is taken from statement of Lemma 12

(c) Follows fro Lemma 7.
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5.3.2. Proof of Theorem 5. Proof of Theorem 5 becomes a special case
of proof of Theorem 6 as we do not have dependence on p in rate anymore.

6. Application to Special Problems.

6.1. Application to Covariance and Precision Matrix Estimation. The
general method of estimation given in Section 5 can be used in robust reg-
ularized estimation of covariance and inverse covariance matrices. Class of
Elliptical densities contain densities having tails both thicker and thinner
than sub-Gaussian random variables. So, adaptive estimation of covariance
matrix from a class of elliptical densities lead to covariance matrix esti-
mators, which are robust to tail-behavior of the under distribution of the
random variable.

Let X1, . . . , Xn where Xi ∈ Rp are independent elliptically distributed
random variables with density f(·;0,Ω). Then the density function f(·;µ,Ω)
is of the form

(6.1) f(x;0,Ω) = |Ω|1/2gp
Ä
xTΩx

ä
where θ = (0,Ω) ∈ Rp(p+3)/2 are the Euclidean mean and covariance pa-
rameters respectively with Ω ∈ Rp(p+1)/2 and gp : R+ → R+ is the infinite-
dimensional parameter with the property∫

Rp
gp(x

Tx)dx = 1

R+ = [0,∞). Ω ≡ Σ−1 is the inverse covariance parameter and Σ is the
covariance parameter.

Now, we consider the high-dimensional situation under the additional
structure of sparsity imposed on the Euclidean parameters θ0. We consider
that ||Ω−||0= s, where, ||·||0 calculates the number of non-zero entries in the
vector or the matrix in vectorized form. Small values of s indicates sparsity.
We consider the high-dimensional case, that is when we have the dimension
of the Euclidean parameters, p, growing with number of samples, n.

6.1.1. Method. If we follow the estimation procedure suggested in Sec-
tion 5, we shell get the robust regularized estimate, Ω̃ of Ω with nice
theoretical properties given in Theorem 6. This procedure can be performed
for any other additional structure on the parameters and for any other form
of penalization on parameters. As a special case, assume sparsity condition:
||Ω−||0= s, where, ||·||0 calculates the number of non-zero entries in the vec-
tor or the matrix in vectorized form and `1 penalty on off-diagonal elements
of Ω. The steps of estimation procedure can be stated as -
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(1) Assume that we have an initial consistent estimators Ω̂, such that, ||Ω̂−
Ω0||F concentrates around zero with tail bounds given by functions
J(t, n, p) such that,

P[||Ω− Ω̂||F> t] ≤ J2(t, n, p).

So, we have, ||Ω̂−Ω0||2= OP ((ω(p, n)), where, ω(p, n)→ 0 as p.n→∞
with given tail bounds.
There is a rich literature on robust estimates of multivariate location
and scale parameters. The book by Hampel et.al. [25] is a good source.

(2) Define Ŷi = XT
i Ω̂Xi and based on (Ŷ1, . . . , Ŷn), we construct the

Grenander type estimator ĝn(y) of the density generator gp from the
equation (3.5). If gp is monotone, we get an isotonic linear spline es-

timate of φ(y), where, exp(φ(y)) ≡ gp(y), in the form of ψ̂(y), defined
by the equation (3.14).

(3) Use the slope estimates of the linear spline estimators φ̂n or ψ̂n, to
get an approximated penalized log-likelihood loss function, ˜̀(θ) for the
Euclidean parameters θ under sparsity assumptions, given by equation
(4.10)

˜̀(Ω|X, µ̃) =
n

2
log|Ω|−tr (S∗Ω) + ν|Ω−|1

where, S∗ ≡∑n
i=1 aiX

T
i Xi and

Ω̃ = arg max
Ω

˜̀(Ω)

are the robust regularized estimators of Euclidean parameter Ω.
The likelihood optimization problems are convex optimization prob-
lems and have been the focus of much study in statistical and opti-
mization literature. The optimization problem for Ω can be solved by
using the graphical LASSO algorithms provided in [21], [54] and [28].

We can get robust regularized estimate of covariance matrix Σ by this
method.

6.1.2. Theoretical Performance. We start with the following assumption
-

(B1) Assume that we have an initial consistent estimators Ω̂, such that,
||Ω̂ − Ω0||F concentrates to zero with tail bounds given by functions
J(t, n, p) such that,

P[||Ω0 − Ω̂||F> t] ≤ J(t, n, p).(6.2)
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We have, ||Ω̂ − Ω0||2= OP ((ω(p, n)), where, ω(p, n) → 0 as p, n → ∞
with given tail bounds.

In the high-dimensional situation we assume the additional structure of spar-
sity imposed on Ω0. Density generator g comes from a consistent family el-

liptical distributions and so by Lemma 4, Ω
1/2
0 (X)

d
= Zp/

√
ξ. Let us consider

the probability density function of Xj to be h (j = 1, . . . , p) and

H(u) ≡
∫ ∞
u

h(v)dv(6.3)

We consider the following assumptions -

(B2) Suppose that ||Ω−||0≤ s, where, ||·||0 calculates the number of non-zero
entries in the vector or the matrix in vectorized form. Small values of
s indicates sparsity.

(B3) λmin(Σ0) ≥ k > 0, or equivalently λmax(Ω0) ≤ 1/k. λmax(Σ0) ≤ k.
(B4) The function H(t) defined in Eq. (6.3) and J(t, n, p) defined in Eq.

(6.2), satisfies the following conditions -
there exists a function σ(p, n) : N × N → R+ is defined such that for
constants, d1, d2, d3 > 0, for t = O(σ(p, n)),

d1p
2(J(t, n, p))n(exp(−nd2t))(d3 exp(−nd3t

2))→ 0 as p, n→∞
(6.4)

Let us consider that we have obtained estimators of the Euclidean param-
eters Ω̃ and the nonparametric component ĝ by following the estimation pro-
cedure of the elliptical density in Section 5. We consider the high-dimensional
situation now, that means the number of dimensions p and the number of
samples n both grow.

Theorem 13. Define φp(y) ≡ log(gp) and assume the following regu-
larity conditions on density generator gp and φp(y): gp is twice continu-
ously differentiable with bounded second derivative and derivative φ′ and g′

bounded away from 0 (from above) and −∞ and
∫

(φ′′)2 <∞. Then, under
assumption (B1)-(B4),

||Ω0 − Ω̃||F= OP
(»

(p+ s)σ(p, n)
)

for ν = O (σ(p, n)) .

Proof. The proof follows from Theorem 6 with µ0 = 0.

So, we get a consistent estimator Ω̃ with computable rates of convergence,
which is robust against tail behavior. Similarly, we can also get estimates of
the covariance matrix Σ and correlation matrix by extending the methods
suggested in [45] and [36] in our setup.
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6.2. Application to Regression with Elliptical Errors. The general method
of estimation given in Section 5 can be used in robust regularized regression.
Class of Elliptical densities contain densities having tails both thicker and
thinner than sub-Gaussian random variables. So, if we have linear regression
with error variables having elliptical distributions, then, adaptive estimation
from a class of elliptical densities lead to regression estimators, which are
robust to tail-behavior of the error variables. Thus, we shall be able to get
robust regularized regression estimators.

Let ((Y1, X1), . . . , (Yn, Xn)) where Xi ∈ Rp and Yi ∈ R are predictor and
response variable such that

Yi = βT0 Xi + εi

where, εi are independent elliptically distributed random variables with den-
sity f(·;0, I). So, the density function of Yi is f(·;βT0 Xi, I), where, f is the
elliptical density. So, the problem of estimation of β boils down to the prob-
lem of estimation of mean parameter of the elliptical density.

6.2.1. Method. For high-dimensional regression, we consider the most
vanilla situation and method. We consider the high-dimensional situation
under the additional structure of sparsity imposed on the regression coeffi-
cients β0. We consider that ||β||0≤ s, where, ||·||0 calculates the number of
non-zero entries in the vector or the matrix in vectorized form. Small values
of s indicates sparsity. We consider the high-dimensional case, that is when
we have the dimension of the Euclidean parameters, p, growing with number
of samples, n.

(1) Assume that we have an initial consistent estimators β̂, such that,
||β̂−β0||2 concentrates around zero with tail bounds given by functions
J(t, n, p) such that,

P[||β0 − β̂||2> t] ≤ J(t, n, p)

So, we have, ||β̂−β0||F= OP ((ω(p, n)), where, ω(p, n)→ 0 as p.n→∞
with given tail bounds.
There is a rich literature on robust estimates of multivariate location
and scale parameters. The book by Hampel et.al. [25] is a good source.

(2) Define Êi = (Yi − β̂TXi)
2 and based on (Ê1, . . . , Ên), we construct

the Grenander type estimator ĝn(y) of the density generator gp from
the equation (3.5). If gp is monotone, we get an isotonic linear spline

estimate of φ(y), where, exp(φ(y)) ≡ gp(y), in the form of ψ̂(y), defined
by the equation (3.14).
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(3) Use the slope estimates of the linear spline estimators φ̂n or ψ̂n, to
get an approximated penalized log-likelihood loss function, ˜̀(θ) for the
Euclidean parameters θ under sparsity assumptions, given by equation
(4.10)

˜̀(µ|X) =
n∑
i=1

ai(Yi − βTXi)
T (Yi − βTXi) + ν||β||1

and

β̃ = arg max
β

˜̀(β)

are the robust regularized estimators of Euclidean parameters of β0.
The likelihood optimization problems are convex optimization prob-
lems and have been the focus of much study in statistical and opti-
mization literature. One way of solving the optimization problem for
β is by using LARS algorithm of [17].

6.2.2. Theoretical Performance. Thus following the estimation proce-
dure suggested above, we shell get the robust regularized estimate, β̃
of β0 with nice theoretical properties under restrictions on design matrix
and coefficient parameters such as given in [7], [55] and [42]. Let us just give
one such example of conditions on design matrix and coefficient parameters
called Restricted Eigenvalues conditions given in [7]. The condition is stated
as -

(C1) Assume

κ(s, p, c0) ≡ min
J0⊆[p],|J0|≤s

min
δ 6=0,|δJc

0
|1≤c0|δJ01 |1

||Xδ2||2√
n||δJ01 ||2

> 0(6.5)

where, for integers s,m such that 1 ≤ s ≤ p/2 and m ≥ s, s+m ≤ p,
a vector δ ∈ Rp and a set of indices J0 ⊆ {1, . . . , p} with |J0|≤ s;
denote by J1 the subset of {1, . . . , p} corresponding to the m largest in
absolute value coordinates of δ outside of J0, and define J01 ≡ J0∪J1.

Also,

(C2) Assume that we have an initial consistent estimators β̂, such that,
||β̂ − β0||2 concentrates to zero with tail bounds given by functions
J(t, n, p) such that,

P[||β0 − β̂||2> t] ≤ J(t, n, p)(6.6)

We have, ||β̂ − β0||F= OP ((ω(p, n)), where, ω(p, n) → 0 as p, n → ∞
with given tail bounds.
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We consider the high-dimensional situation. So, in this case, the dimension
of Euclidean parameters grows with n. In the high-dimensional situation
we assume the additional structure of sparsity imposed on the coefficient
parameters β0. Density generator g comes from a consistent family elliptical

distributions and so by Lemma 4, εi
d
= Z/

√
ξ. Let us consider the probability

density function of εi to be h (j = 1, . . . , p) and

H(u) ≡
∫ ∞
u

h(v)dv(6.7)

We consider the following assumptions -

(C3) Suppose that ||β||0≤ s, where, ||·||0 calculates the number of non-zero
entries in the vector or the matrix in vectorized form. Small values of
s indicates sparsity.

(C4) The function H(t) defined in Eq. (6.7) and J(t, n, p) defined in Eq.
(6.2), satisfies the following conditions -
there exists a function σ(p, n) : N × N → R+ is defined such that for
constants, c, d > 0, for t = O(σ(p, n)),

p(c exp(−dt)J(t, n, p))n → 0 as p, n→∞(6.8)

Let us consider that we have obtained estimators of the coefficient param-
eters β̃ and nonparametric component ĝ by following the estimation proce-
dure of the elliptical density in Section 5. We consider the high-dimensional
situation now, that means the number of dimensions p and the number of
samples n both grow.

Theorem 14. Define φp(y) ≡ log(gp) and assume the following regu-
larity conditions on density generator gp and φp(y): gp is twice continu-
ously differentiable with bounded second derivative and derivative φ′ and g′

bounded away from 0 (from above) and −∞ and
∫

(φ′′)2 <∞. Then, under
assumption (C1)-(C4), with c0 = 3 in (C1),

||β0 − β̃||2= OP
Ä√

sσ(p, n)
ä

(6.9)

Proof. The proof follows the same steps as proof of Theorem 7.2 of [7]
with only the concentration inequality portion replaced by the concentration
inequality of Theorem 6 and Lemma 11.

This procedure can be performed for any other additional structure on
the regression parameters and for any other form of penalization of loss
function. These gives a lot of scope for future work.
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6.3. Mixture of Elliptic Distributions. LetX1, . . . , Xn ∼
∑K
k=1 pkfk(x;µk,Ωk),

where, Xi ∈ Rp and fk(·;µk,Ωk) is the density of elliptic distribution of the
form

(6.10) f(x;µk,Ωk) = |Ωk|gk
Ä
(x− µk)TΩk(x− µk)

ä
where, gk(·) is a density generator, that is, a non-negative function on [0,∞)
such that the spherically symmetric (around zero) function gk(x

Tx), x ∈ Rp
integrates to 1 and gk is non-increasing in [0,∞) so that the density is
unimodal.

Our goal is the estimation of Euclidean parameters θ = (µk,Ωk)
K
k=1 or

θ = (µk,Ωk)
K
k=1 in the high-dimensional setting as well as the infinite-

dimensional parameters G = (g1, . . . , gK)

6.3.1. EM Algorithm. We have data X = (X1, . . . , Xn), where, Xi
i.i.d∼

p(x;θ,G,π). The complete data vector is given by Xc = (Z,X), where,
Z = (Z1, . . . , Zn) and each Zi ∈ {0, 1}K indicates component label. The
complete data log likelihood is given by

`c(φ) =
n∑
i=1

K∑
k=1

Zik log πk +
K∑
k=1

λ1k||µk||1+
K∑
k=1

λ2k||Ω−||1

+
n∑
i=1

K∑
k=1

Zik

Å
1

2
log|Ωk|+ log g

Ä
tr
Ä
(x− µk)T (x− µk)

ä
Ωk

äã
The conditional log likelihood is given by

Q(φ) =
n∑
i=1

K∑
k=1

τik log πk +
K∑
k=1

λ1k||µk||1+
K∑
k=1

λ2k||Ω−||1

+
n∑
i=1

K∑
k=1

τik

Å
1

2
log|Ωk|+ log g

Ä
tr
Ä
(x− µk)T (x− µk)

ä
Ωk

äã
where, τik = E[Zik|X,φ]

For mth iteration of the algorithm, we start with φ(m) and

E step We estimate τ
(m+1)
ik = E[Zik|X,φ(m)].
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M step We maximize Q(φ) with τ (m+1) and the mth iterate estimates are

π
(m+1)
k =

∑n
i=1 τ

(m+1)
ik∑n

i=1

∑K
k=1 τ

(m+1)
ik

µ
(m+1)
k = arg min

µ

n∑
i=1

τik
(
log g

(m)
k

(
tr
Ä
(Xi − µ)(Xi − µ)T

ä
Ω

(m)
k

))
+ λ1k||µ||1

Ω
(m+1)
k = arg min

Ω�0

n∑
i=1

τik

Å
log g

(m)
k

Ä
tr
Ä
(Xi − µ)(Xi − µ)T

ä
Ω
ä
− 1

2
log|Ω|

ã
+ λ2k||Ω−||1

g
(m+1)
k = log-linear spline estimate of gk based on

(Xi − µ(m+1)
k )TΩ

(m+1)
k (Xi − µ(m+1)

k ) for i = 1, . . . , n

6.3.2. Theoretical Results. The family of distributions P = {P(θ,G)} be-
comes identifiable under the conditions given in [27]. The condition states
that for elliptical distributions with consistency property, that is, elliptical

distributions of the form Xp
d
=

Zp

ξ given in Lemma 4, we have identifiability
of Euclidean parameters for mixtures of such elliptic distributions if density
of ξ, h exists and satisfies

lim
r→0

h(r)

h(ar)
= 0 for a > 1(6.11)

The result is given in Theorem 4 of [27].

Theorem 15. Assume that we have a mixture of elliptical distributions
P = {P(θ,G)} with consistency property. Also, the scale parameter, ξ as
defined in Lemma 4 of each elliptical distribution component satisfies 6.11.
Also, the Euclidean parameters of each elliptical distribution component sat-
isfies the conditions mentioned in Theorem 6 and they lie within a compact
set. Then, we have -
The EM algorithm converges to a stationary point or local maxima of the
penalized likelihood function.

Proof. We are maximizing the penalized likelihood at each M Step of
the EM algorithm by following the steps of penalized maximum likelihood
inference in Section 5. Thus, we get a hill-climbing algorithm. Also, the
penalized likelihood function is bounded from above. So, the sequence of
estimators obtained by EM iterations converges to a stationary point of the
penalized likelihood function, since we are within a compact set.
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7. Simulation Examples. We simulate from high-dimensional Gaus-
sian and t-distribution and try to estimate the inverse covariance matrix.

7.1. Estimation of High-dimensional Covariance Matrix and Density Gen-
erator. We have number of samples n = 400 and dimension of the data
vectors as p = 400. We generate the Gaussian distribution with mean 0 and
banded covariance matrix. The estimated covariance matrices are given in
Figure 2. The top row of Figure 2 are the original covariance matrix, empiri-
cal covariance matrix and Graphical LASSO estimate from left to right. The
bottom row of Figure 2 are the banded estimated covariance matrix, robust
estimated covariance matrix and robust regularized estimated covariance
matrix (our method) from left to right.

Figure 2. For n = 400 and p = 400, we get different covariance estimators for a banded
covariance matrix of normal distribution.

We have number of samples n = 400 and dimension of the data vectors
as p = 400. We generate the t distribution having 2 degree of freedom and
a banded covariance matrix. The estimated covariance matrices are given
in Figure 6. The top row of Figure 6 are the original covariance matrix,
empirical covariance matrix and Graphical LASSO estimate from left to
right. The bottom row of Figure 6 are the banded estimated covariance
matrix, robust estimated covariance matrix and robust regularized estimated
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covariance matrix (our method) from left to right. We also give the estimated

Figure 3. For n = 400 and p = 400, we get different covariance estimators for a banded
covariance matrix. of t-dist

density generators for the Gaussian distribution and t distribution cases.

8. Real Data Examples.

8.1. High-dimensional Covariance Estimation in Breast Cancer Data. In
the biological data set, we focus on selecting gene expression profiling as
a potential tool to predict them breast cancer patients who may achieve
pathologic Complete Response (pCR), which is defined as no evidence of
viable, invasive tumor cells left in surgical specimen. pCR after neoadjuvant
chemotherapy has been described as a strong indicator of survival, justifying
its use as a surrogate marker of chemosensitivity. Consequently, considerable
interest has been developed in finding methods to predict which patients will
have a pCR to preoperative therapy. In this study, we use the normalized
gene expression data of 130 patients with stage I-III breast cancers analyzed
by Hess et al. (2006) [26]. Among the 130 patients, 33 of them are from
class 1 (achieved pCR), while the other 97 belong to class 2 (did not achieve
pCR).

To evaluate the performance of the penalized precision matrix estimation
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(a) (b)

Figure 4. For n = 400, we get estimator of density generator gp for normal and t.

using three different penalties, we randomly divide the data into training
and testing sets of sizes 109 and 21, respectively, and repeat the whole
process 100 times. To maintain similar class proportion for the training and
testing datasets, we use a stratified sampling: each time we randomly select
5 subjects from class 1 and 16 subjects from class 2 (both are roughly 1/6 of
their corresponding total class subjects) and these 21 subjects make up the
testing set; the remaining will be used as the training set. From each training
data, we first perform a two-sample t-test between the two groups and select
the most significant 120 genes that have the smallest p-values. In this case,
the dimensionality p = 120 is slightly larger than the sample size n = 109 for
training datasets in our classification study. Due to the noise accumulation
demonstrated in Fan and Fan (2008), p = 120 may be larger than needed for
optimal classification, but allows us to examine the performance when p > n.
Second, we perform a gene-wise standardization by dividing the data with
the corresponding standard deviation, estimated from the training dataset.
Finally, we estimate the precision matrix and covariance matrix for both
the classes for the training data using our method and standard graphical
LASSO estimates. We find that our method gives sparser estimates of both
inverse covariance and covariance matrices. The mean number of non zeros
are given in the following table -

9. Conclusion. We have developed adaptive estimation procedure for
estimation of elliptical distribution for both low and high-dimensional cases.
The method of estimation is novel and it gives us a way to move from fixed-
dimensional to high-dimensional case quite naturally. We have developed
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Graphical LASSO Our Method

Covariance Matrix 5312 4616

Inverse Covariance Matrix 486 412

Table 1
The number of non-zero elements in estimators of covariance and inverse covariance

matrix in Breast Cancer Data.

Figure 5. Breast Cancer Data covariance matrix estimators using Graphical Lasso (Left)
and our method (Right).
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Figure 6. Breast Cancer Data inverse covariance matrix estimators using Graphical Lasso
(Left) and our method (Right).

estimation procedure for the density generator function of the elliptical dis-
tribution in a log-linear spline form in Section 3 and derive respective error
bounds. We use the estimate of density generator function of elliptical distri-
bution to adaptively estimate Euclidean parameters of elliptical distribution.

For the estimation of Euclidean parameters, we devise a weighted loss
function, where, the weights come from the slopes of estimated density gen-
erator function. As a result we have a very natural extension of squared error
loss function and with the help of this weighted squared error loss function,
we are able to estimate mean and covariance matrix parameters coming from
distributions with widely varying tail behavior. So, we get robust estimates
of the mean and covariance matrix.

Now, for the high-dimensions case too, weighted least squares loss func-
tion is a natural generalization of the least squares loss function, but with
this simple generalized loss function, we are able to handle random variables
coming from widely varying tail behaviors. As a result we can obtain estima-
tors which are both regularized and robust in high-dimensions. Our approach
is not the only approach in statistics literature which can produce estimators
that have this dual property of being both robust to changing tail conditions
and regularized to constrained parameter spaces in high-dimensions, but it
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is a quite natural one.
We have indicated three special cases, for which our method can be inde-

pendently developed -(a) Estimation of Covariance and Precision matrix (b)
Regression with Elliptical errors and (c) Clustering via mixtures of elliptical
distribution in Section 6. For all of these cases, our method can give robust
estimates, which can be regularized in high-dimensions.

Feasible algorithms are quite easily obtainable for our method, as most
algorithms that work on least squares loss function also work for weighted
least square loss functions too. So, we give an easy approximation to a hard
optimization problem and try to solve an optimization problem, which is
much easier to handle. As a result our method can borrow strength from
existing optimization literature.

So, we have provided an estimation procedure of mean and covariance
matrix parameters of elliptic distributions, which is adaptive to the tail
behavior and given some theoretical justification for the estimators. The
procedure can be extended to use in several classical statistical problems
of regression, classification and clustering, thus making our method a very
important stepping stone for developing future natural robust regularized
estimators.
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[41] Meinshausen, N. and Bühlmann, P. (2010). Stability selection. J. R. Stat. Soc.
Ser. B Stat. Methodol. 72 417–473. MR2758523

[42] Meinshausen, N. and Yu, B. (2009). Lasso-type recovery of sparse representations
for high-dimensional data. Ann. Statist. 37 246–270. MR2488351 (2010e:62176)

[43] Pal, J. K. and Woodroofe, M. (2007). Large sample properties of shape restricted
regression estimators with smoothness adjustments. Statistica Sinica 17 1601.

[44] Robertson, T., Wright, F. T. and Dykstra, R. L. (1988). Order restricted sta-
tistical inference. Wiley Series in Probability and Mathematical Statistics: Probabil-
ity and Mathematical Statistics. John Wiley & Sons Ltd., Chichester. MR961262
(90b:62001)

[45] Rothman, A. J., Levina, E. and Zhu, J. (2009). Generalized thresholding
of large covariance matrices. J. Amer. Statist. Assoc. 104 177–186. MR2504372
(2010g:62186)

[46] Rufibach, K. (2007). Computing maximum likelihood estimators of a log-concave
density function. J. Stat. Comput. Simul. 77 561–574. MR2407642

[47] Srivastava, N. and Vershynin, R. (2011). Covariance Estimation for Distributions
with 2+\ epsilon Moments. arXiv preprint arXiv:1106.2775.

[48] Stute, W. and Werner, U. (1991). Nonparametric estimation of elliptically con-
toured densities. In Nonparametric Functional Estimation and Related Topics 173–
190. Springer.

http://www.ams.org/mathscinet-getitem?mr=606374
http://www.ams.org/mathscinet-getitem?mr=1811742
http://www.ams.org/mathscinet-getitem?mr=1309373
http://www.ams.org/mathscinet-getitem?mr=1135166
http://www.ams.org/mathscinet-getitem?mr=0397974
http://www.ams.org/mathscinet-getitem?mr=2722462
http://www.ams.org/mathscinet-getitem?mr=2572459
http://www.ams.org/mathscinet-getitem?mr=2026339
http://www.ams.org/mathscinet-getitem?mr=2102252
http://www.ams.org/mathscinet-getitem?mr=1325140
http://www.ams.org/mathscinet-getitem?mr=1325140
http://www.ams.org/mathscinet-getitem?mr=2278363
http://www.ams.org/mathscinet-getitem?mr=2758523
http://www.ams.org/mathscinet-getitem?mr=2488351
http://www.ams.org/mathscinet-getitem?mr=961262
http://www.ams.org/mathscinet-getitem?mr=961262
http://www.ams.org/mathscinet-getitem?mr=2504372
http://www.ams.org/mathscinet-getitem?mr=2504372
http://www.ams.org/mathscinet-getitem?mr=2407642


ADAPTIVE ESTIMATION IN ELLIPTICAL DISTRIBUTIONS 49

[49] Tantiyaswasdikul, C. and Woodroofe, M. B. (1994). Isotonic smoothing splines
under sequential designs. Journal of Statistical Planning and Inference 38 75–87.

[50] Tyler, D. E. (1987). A distribution-free M -estimator of multivariate scatter. Ann.
Statist. 15 234–251. MR885734 (88g:62112)

[51] van der Vaart, A. W. and Wellner, J. A. (1996). Weak convergence and empirical
processes. Springer Series in Statistics. Springer-Verlag, New York. With applications
to statistics. MR1385671 (97g:60035)

[52] Walther, G. (2009). Inference and modeling with log-concave distributions. Statist.
Sci. 24 319–327. MR2757433 (2011j:62110)

[53] Wiesel, A. (2012). Unified framework to regularized covariance estimation in scaled
Gaussian models. IEEE Trans. Signal Process. 60 29–38. MR2932100

[54] Witten, D. M., Friedman, J. H. and Simon, N. (2011). New insights and faster
computations for the graphical lasso. Journal of Computational and Graphical Statis-
tics 20 892–900.

[55] Zhao, P. and Yu, B. (2006). On model selection consistency of Lasso. J. Mach.
Learn. Res. 7 2541–2563. MR2274449

Department of Statistics
367 Evans Hall
Berkeley, CA, 94720
E-mail: sharmo@stat.berkeley.edu

bickel@stat.berkeley.edu

http://www.ams.org/mathscinet-getitem?mr=885734
http://www.ams.org/mathscinet-getitem?mr=1385671
http://www.ams.org/mathscinet-getitem?mr=2757433
http://www.ams.org/mathscinet-getitem?mr=2932100
http://www.ams.org/mathscinet-getitem?mr=2274449
mailto:sharmo@stat.berkeley.edu
mailto:bickel@stat.berkeley.edu

	Introduction
	Contributions and Outline of the Paper

	Elliptical Distributions and Main Results
	Some Notations
	Main Results

	Inference I: Estimation of Density Generator g_p
	Maximum Likelihood Estimation of Monotone Density Generator
	Spline approximation of NPMLE _n


	Inference II: Estimation of Euclidean Parameters
	Initial Estimates of Euclidean Parameters
	Fixed dimensional case
	High-dimensional case

	Estimation of Density Generator Using Estimates _n and _n
	Maximum Likelihood Estimation of  and 
	Penalized ML Estimation of  and : High-dimensional Case


	Inference III: Combined Approach and Theory
	Fixed Dimension Case
	High-dimensional Case
	Theory
	Proof of Theorem 6
	Proof of Theorem 5


	Application to Special Problems
	Application to Covariance and Precision Matrix Estimation
	Method
	Theoretical Performance

	Application to Regression with Elliptical Errors
	Method
	Theoretical Performance

	Mixture of Elliptic Distributions
	EM Algorithm
	Theoretical Results


	Simulation Examples
	Estimation of High-dimensional Covariance Matrix and Density Generator

	Real Data Examples
	High-dimensional Covariance Estimation in Breast Cancer Data

	Conclusion
	References
	Author's addresses

