QM Rigid Rotor Intro, Associated Legendre Polynomials
Prerequisites
Students should be able to:
In-class Content
* Associated Legendre Polynomials (Lecture, 20 minutes)
Homework for Central Forces
- (FirstNine)
Write out the first 9 terms in the sum: $$\sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} c_{\ell, m} Y_{\ell, m}$$ Describe the energy degeneracy of the rigid rotor system, i.e. give the number of eigenstates that all have the same energy.
- (Separation)
Use the separation of variables procedure on the angular equation
$$\mathbf{L}^2 Y\left(\theta,\phi\right)=A\hbar^2Y\left(\theta,\phi\right)$$
$$\mathrm{where}\,\,\,\mathbf{L}^2= -\hbar^2\left[{1\over \sin\theta}{\partial\over\partial\theta}\left( \sin\theta{\partial\over\partial\theta}\right)+{1\over\sin^2\theta} {\partial^2\over \partial \phi^2}\right]$$
to obtain the following two equations for the polar and azimuthal angles:
$$\left[\frac{1}{\sin\theta}\frac{d}{d\theta}\left(\sin\theta\frac{d}{d\theta}\right)-B\frac{1}{\sin^2\theta}\right]\Theta(\theta)=-A\Theta(\theta)$$
$$\frac{d^2 \Phi(\phi)}{d\phi^2}=-B\Phi(\phi)$$