Activity 2: Solution for electric potential due to a ring

Find the electrostatic potential in all space due to a ring with total charge Q and radius R

$$
\begin{equation*}
V(\overrightarrow{\boldsymbol{r}})=\frac{1}{4 \pi \epsilon_{0}} \sum_{i=1}^{N} \frac{q_{i}}{\left|\overrightarrow{\boldsymbol{r}}-\overrightarrow{\boldsymbol{r}}_{i}\right|} \tag{1}
\end{equation*}
$$

For a ring of charge this becomes

$$
\begin{equation*}
V(\overrightarrow{\boldsymbol{r}})=\int_{\operatorname{ring}} \frac{1}{4 \pi \epsilon_{0}} \frac{\lambda\left(\overrightarrow{\boldsymbol{r}}^{\prime}\right)\left|d \overrightarrow{\boldsymbol{r}}^{\prime}\right|}{\left|\overrightarrow{\boldsymbol{r}}-\overrightarrow{\boldsymbol{r}}^{\prime}\right|} \tag{2}
\end{equation*}
$$

where $\overrightarrow{\boldsymbol{r}}$ denotes the position in space at which the potential is measured and $\overrightarrow{\boldsymbol{r}}^{\prime}$ denotes the position of the charge.

In cylindrical coordinates, $\left|d \overrightarrow{\boldsymbol{r}}^{\prime}\right|=R d \phi^{\prime}$, where R is the radius of the ring. Thus,

$$
\begin{equation*}
V(\overrightarrow{\boldsymbol{r}})=\frac{1}{4 \pi \epsilon_{0}} \int_{0}^{2 \pi} \frac{\lambda\left(\overrightarrow{\boldsymbol{r}}^{\prime}\right) R d \phi^{\prime}}{\left|\overrightarrow{\boldsymbol{r}}-\overrightarrow{\boldsymbol{r}}^{\prime}\right|} \tag{3}
\end{equation*}
$$

Assuming constant linear charge density for a ring with charge Q and radius $\mathrm{R}, \lambda\left(\overrightarrow{\boldsymbol{r}}^{\prime}\right)=\frac{Q}{2 \pi R}$ Thus,

$$
\begin{equation*}
V(\overrightarrow{\boldsymbol{r}})=\frac{1}{4 \pi \epsilon_{0}} \frac{Q}{2 \pi} \int_{0}^{2 \pi} \frac{d \phi^{\prime}}{\left|\overrightarrow{\boldsymbol{r}}-\overrightarrow{\boldsymbol{r}}^{\prime}\right|} \tag{4}
\end{equation*}
$$

Since $\overrightarrow{\boldsymbol{r}}$ and $\overrightarrow{\boldsymbol{r}}^{\prime}$ are not necessarily in the same direction, we cannot simply leave $\left|\overrightarrow{\boldsymbol{r}}-\overrightarrow{\boldsymbol{r}}^{\prime}\right|$ in curvilinear coordinates and integrate directly. One solution to this problem is to rewrite $\left|\overrightarrow{\boldsymbol{r}}-\overrightarrow{\boldsymbol{r}}^{\prime}\right|$ in cartesian coordinates

$$
\begin{equation*}
\left|\overrightarrow{\boldsymbol{r}}-\overrightarrow{\boldsymbol{r}}^{\prime}\right|=\sqrt{\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+\left(z-z^{\prime}\right)^{2}} \tag{5}
\end{equation*}
$$

Setting the ring in the x, y plane with the center at the origin and then rewriting in cylindrical coordinates results in

$$
\begin{equation*}
\left|\overrightarrow{\boldsymbol{r}}-\overrightarrow{\boldsymbol{r}}^{\prime}\right|=\sqrt{\left(r \cos \phi-R \cos \phi^{\prime}\right)^{2}+\left(r \sin \phi-R \sin \phi^{\prime}\right)^{2}+(z-0)^{2}} \tag{6}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left|\overrightarrow{\boldsymbol{r}}-\overrightarrow{\boldsymbol{r}}^{\prime}\right|=\sqrt{r^{2}-2 r R \cos \left(\phi-\phi^{\prime}\right)+R^{2}+z^{2}} \tag{7}
\end{equation*}
$$

Substituting into Eq. 4 results in the elliptic integral

$$
\begin{equation*}
V(r, \phi, z)=\frac{1}{4 \pi \epsilon_{0}} \frac{Q}{2 \pi} \int_{0}^{2 \pi} \frac{d \phi^{\prime}}{\sqrt{r^{2}-2 r R \cos \left(\phi-\phi^{\prime}\right)+R^{2}+z^{2}}} \tag{8}
\end{equation*}
$$

1 The z axis
For points on the z axis, $r=0$ and the integral simplifies to

$$
\begin{equation*}
V(r, \phi, z)=\frac{1}{4 \pi \epsilon_{0}} \frac{Q}{2 \pi} \int_{0}^{2 \pi} \frac{d \phi^{\prime}}{\sqrt{R^{2}+z^{2}}} \tag{9}
\end{equation*}
$$

And thus

$$
\begin{equation*}
V(r, \phi, z)=\frac{Q}{4 \pi \epsilon_{0}} \frac{1}{\sqrt{R^{2}+z^{2}}} \tag{10}
\end{equation*}
$$

1.1 Power series expansions for z axis

To create the power series expansion for $|z| \ll R$, factor out R from the denominator

$$
\begin{equation*}
V(r, \phi, z)=\frac{Q}{4 \pi \epsilon_{0}} \frac{1}{R} \frac{1}{\sqrt{1+\frac{z^{2}}{R^{2}}}} \tag{11}
\end{equation*}
$$

Using the power series $(1+z)^{p}=1+p z+\frac{p(p-1)}{2!} z^{2}+\ldots$ results in

$$
\begin{equation*}
V(x, y, z)=\frac{Q}{4 \pi \epsilon_{0}} \frac{1}{R}\left(1-\frac{1}{2} \frac{z^{2}}{R^{2}}+\frac{3}{8} \frac{z^{4}}{R^{4}}+\ldots\right) \tag{12}
\end{equation*}
$$

The power series expansion for $z \gg R$ is

$$
\begin{equation*}
V(x, y, z)=\frac{Q}{4 \pi \epsilon_{0}} \frac{1}{z}\left(1-\frac{1}{2} \frac{R^{2}}{z^{2}}+\frac{3}{8} \frac{R^{4}}{z^{4}}+\ldots\right) \tag{13}
\end{equation*}
$$

2 The x axis

For points on the x axis, $z=0$ and $\phi=0$, so the integral simplifies to

$$
\begin{equation*}
V(r, \phi, z)=\frac{1}{4 \pi \epsilon_{0}} \frac{Q}{2 \pi} \int_{0}^{2 \pi} \frac{d \phi^{\prime}}{\sqrt{r^{2}-2 r R \cos \phi^{\prime}+R^{2}}} \tag{14}
\end{equation*}
$$

Which can be rewritten as

$$
\begin{equation*}
V(r, \phi, z)=\frac{1}{4 \pi \epsilon_{0}} \frac{Q}{2 \pi} \int_{0}^{2 \pi}\left(r^{2}-2 r R \cos \phi^{\prime}+R^{2}\right)^{-1 / 2} d \phi^{\prime} \tag{15}
\end{equation*}
$$

In this case the power series expansion can be done before integration and then the power series can be integrated. For $x \gg R$, factor out an $1 / r$ to obtain

$$
\begin{equation*}
V(r, \phi, z)=\frac{1}{4 \pi \epsilon_{0}} \frac{Q}{2 \pi} \int_{0}^{2 \pi} \frac{1}{r}\left(1-\frac{2 R}{r} \cos \phi^{\prime}+\frac{R^{2}}{r^{2}}\right)^{-1 / 2} d \phi^{\prime} \tag{16}
\end{equation*}
$$

Let $\epsilon=-\frac{2 R}{r} \cos \phi^{\prime}+\frac{R^{2}}{r^{2}}$

$$
\begin{equation*}
V(r, \phi, z)=\frac{1}{4 \pi \epsilon_{0}} \frac{Q}{2 \pi} \frac{1}{r} \int_{0}^{2 \pi}(1+\epsilon)^{-1 / 2} d \phi^{\prime} \tag{17}
\end{equation*}
$$

The power series expansion now yields

$$
\begin{equation*}
V(r, \phi, z)=\frac{1}{4 \pi \epsilon_{0}} \frac{Q}{2 \pi} \frac{1}{r} \int_{0}^{2 \pi}\left(1-\frac{1}{2} \epsilon+\frac{3}{8} \epsilon^{2}-\frac{15}{48} \epsilon^{3}+\ldots\right) d \phi^{\prime} \tag{18}
\end{equation*}
$$

Substituting $-\frac{2 R}{r} \cos \phi^{\prime}+\frac{R^{2}}{r^{2}}$ for ϵ results in the integrand

$$
\begin{align*}
1+\left(-\frac{1}{2}\right) & \left(-\frac{2 R}{r} \cos \phi^{\prime}+\frac{R^{2}}{r^{2}}\right)+\left(\frac{3}{8}\right)\left(\frac{4 R^{2}}{r^{2}} \cos ^{2} \phi^{\prime}-\frac{4 R^{3}}{r^{3}} \cos \phi^{\prime}+\frac{R^{4}}{r^{4}}\right) \tag{19}\\
+ & \left(-\frac{15}{48}\right)\left(-\frac{8 R^{3}}{r^{3}} \cos ^{3} \phi^{\prime}+\frac{8 R^{4}}{r^{4}} \cos ^{2} \phi^{\prime}-\frac{4 R^{5}}{r^{5}} \cos \phi^{\prime}+\frac{R^{6}}{r^{6}}\right)+\ldots \tag{20}
\end{align*}
$$

Adding like terms and getting rid of any powers greater than third-order in r yields

$$
\begin{equation*}
1+\frac{R}{r} \cos \phi^{\prime}-\frac{R^{2}}{2 r^{2}}+\frac{3 R^{2}}{2 r^{2}} \cos ^{2} \phi^{\prime}-\frac{3 R^{3}}{2 r^{3}} \cos \phi^{\prime}+\frac{5 R^{3}}{2 r^{3}} \cos ^{3} \phi^{\prime}+\ldots \tag{21}
\end{equation*}
$$

Using this power series and performing the integral results in the first two non-zero terms for the potential

$$
\begin{equation*}
V(r, \phi, z)=\frac{1}{4 \pi \epsilon_{0}} \frac{Q}{2 \pi} \frac{1}{r}\left(2 \pi+\frac{\pi}{2} \frac{R^{2}}{r^{2}}+\ldots\right) \tag{22}
\end{equation*}
$$

Which can be simplified to

$$
\begin{equation*}
V(r, \phi, z)=\frac{Q}{4 \pi \epsilon_{0}} \frac{1}{r}\left(1+\frac{1}{4} \frac{R^{2}}{r^{2}}+\ldots\right) \tag{23}
\end{equation*}
$$

