Calculating Total Charge

For each case below, find the total charge. What are the dimensions of the constants α and k ? (If the total charge is infinite, what should you calculate instead to provide meaningful information?)

1. A positively charged (dielectric) spherical shell of inner radius a and outer radius b with a spherically symmetric internal charge density $\rho(r)=\alpha r^{3}$
2. A positively charged (dielectric) spherical shell of inner radius a and outer radius b with a spherically symmetric internal charge density $\rho(r)=3 \alpha e^{(k r)^{3}}$
3. A positively charged (dielectric) spherical shell of inner radius a and outer radius b with a spherically symmetric internal charge density $\rho(r)=\alpha \frac{e^{(k r)}}{r^{2}}$
4. A positively charged (dielectric) cylindrical shell of inner radius a and outer radius b with a cylindrically symmetric internal charge density $\rho(r)=\alpha r^{3}$
5. A positively charged (dielectric) cylindrical shell of inner radius a and outer radius b with a cylindrically symmetric internal charge density $\rho(r)=3 \alpha e^{(k r)^{2}}$
6. A positively charged (dielectric) cyilndrical shell of inner radius a and outer radius b with a cylindrically symmetric internal charge density $\rho(r)=\alpha \frac{e^{(k r)}}{r}$
