Calculating Line Elements in Cylindrical and Spherical Coordinates

Rectangular Coordinates:

The arbitrary infinitesimal displacement vector in Cartesian coordinates is:

$$
d \overrightarrow{\boldsymbol{r}}=d x \hat{\boldsymbol{\imath}}+d y \hat{\boldsymbol{\jmath}}+d z \hat{\boldsymbol{k}}
$$

Given the cube shown below, find $d \overrightarrow{\boldsymbol{r}}$ on each of the three paths, leading from a to b.

Path 1: $d \overrightarrow{\boldsymbol{r}}=$

Path 2: $d \overrightarrow{\boldsymbol{r}}=$

Path 3: $d \overrightarrow{\boldsymbol{r}}=$

The first expression above for $d \overrightarrow{\boldsymbol{r}}$ is valid for any path in rectangular coordinates. Find the appropriate expression for $d \overrightarrow{\boldsymbol{r}}$ for the path which goes directly from a to c as drawn below.

Path 4: $d \overrightarrow{\boldsymbol{r}}=$

However, Cartesian coordinates would be a poor choice to describe a path on a cylindrically or spherically shaped surface. Next we will find an appropriate expression in these cases.

Cylindrical Coordinates:

You will now derive the general form for $d \overrightarrow{\boldsymbol{r}}$ in cylindrical coordinates by determining $d \overrightarrow{\boldsymbol{r}}$ along the specific paths below.

Note that an infinitesmial element of length in the $\hat{\boldsymbol{r}}$ direction is simply $d r$, just as an infinitesimal element of length in the $\hat{\boldsymbol{\imath}}$ direction is $d x$. But, an infinitesimal element of length in the $\hat{\phi}$ direction is not just $d \phi$, since this would be an angle and does not even have the units of length.

Geometrically determine the length of the three paths leading from a to b and write these lengths in the corresponding boxes on the diagram.
Now, remembering that $d \overrightarrow{\boldsymbol{r}}$ has both magnitude and direction, write down below the infinitesimal displacement vector $d \overrightarrow{\boldsymbol{r}}$ along the three paths from a to b. Notice that, along any of these three paths, only one coordinate r, ϕ, or z is changing at a time. (i.e. along path $1, d z \neq 0$, but $d \phi=0$ and $d r=0$).

Path 1: $d \overrightarrow{\boldsymbol{r}}=$

Path 2: $d \overrightarrow{\boldsymbol{r}}=$

Path 3: $d \overrightarrow{\boldsymbol{r}}=$

Cylindrical Coordinates

If all three coordinates are allowed to change simultaneously, by an infinitesimal amount, we could write this $d \overrightarrow{\boldsymbol{r}}$ for any path as:

$$
d \overrightarrow{\boldsymbol{r}}=
$$

This is the general line element in cylindrical coordinates.

Spherical Coordinates

Spherical Coordinates:

You will now derive the general form for $d \overrightarrow{\boldsymbol{r}}$ in spherical coordinates by determining $d \overrightarrow{\boldsymbol{r}}$ along the specific paths below. As in the cylindrical case, note that an infinitesimal element of length in the $\hat{\theta}$ or $\hat{\phi}$ direction is not just $d \theta$ or $d \phi$. You will need to be more careful. Geometrically determine the length of the three paths leading from a to b and write these lengths in the corresponding boxes on the diagram. Now, remembering that $d \overrightarrow{\boldsymbol{r}}$ has both magnitude and direction, write down below the infinitesimal displacement vector $d \overrightarrow{\boldsymbol{r}}$ along the three paths from a to b. Notice that, along any of these three paths, only one coordinate r, θ, or ϕ is changing at a time. (i.e. along path $1, d \theta \neq 0$, but $d r=0$ and $d \phi=0$).

Path 1: $d \overrightarrow{\boldsymbol{r}}=$
Path 2: $d \overrightarrow{\boldsymbol{r}}=$
(Be careful, this is the tricky one.)
Path 3: $d \overrightarrow{\boldsymbol{r}}=$

If all 3 coordinates are allowed to change simultaneously, by an infinitesimal amount, we could write this $d \overrightarrow{\boldsymbol{r}}$ for any path as:

$$
d \overrightarrow{\boldsymbol{r}}=
$$

This is the general line element in spherical coordinates.
by Corinne Manogue and Katherine Meyer
© 1997 \& 2006 Corinne A. Manogue

