Activity 4: Solution for magnetic vector potential

Find the magnetic vector potential in all space due to a ring with total charge
(@ and radius R rotating with a period T
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where 7 denotes the position in space at which the magnetic vector potential is measured and 7’ denotes
the position of the current segment.

For the current
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In cylindrical coordinates, dI’ = Rd¢’, and, as discussed in previous solutions,
|7 — #'| = /12 — 2rRcos(¢ — ¢') + R2 + 22 (4)
Thus
2 . R
A “7/@7 (—sin ¢'i + cos ¢'j) Rd¢y (5)
4 ) T 2—2rRcos(¢p — ¢') + R? + 22
A(_’ Ho QRQ/ (—sin ¢'1 + cos ¢'])de’ (6)
dm T /12 = 2rRcos(¢ — ¢') + R2 + 22
1 The z axis
For points on the z axis, r = 0 and the integral simplifies to
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Doing the integral results in
A =0 (8)
2 The z axis
For points on the x axis, z = 0 and ¢ = 0, so the integral simplifies to
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This results in a very similar situation as the case for electric field on the x axis, except that now we will
address the 2 component instead of the 7 component. Using the same process we let v = 22 — 2z R cos ¢’ + R2,

then du = 2z Rsin ¢’d¢’, and for the # component the integral becomes
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Doing the integral, we find
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A, (P)=0
Thus the 2 component disappears and we are left with an elliptic integral with only a 73 component
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