Recorder:

\qquad
Task Master: \qquad Cynic: \qquad Other: \qquad

THE WIRE

Working in small groups (3 or 4 people), solve as many of the problems below as possible. Try to resolve questions within the group before asking for help. The Recorder is responsible for writing up the group's results and turning it in. Show your work! Full credit will only be given if your answer is supported by calculations and/or explanations as appropriate.

Consider the vector field given by (μ_{0} and I are constants):

$$
\overrightarrow{\boldsymbol{B}}=\frac{\mu_{0} I}{2 \pi}\left(\frac{-y \hat{\boldsymbol{\imath}}+x \hat{\boldsymbol{\jmath}}}{x^{2}+y^{2}}\right)=\frac{\mu_{0} I}{2 \pi} \frac{\hat{\boldsymbol{\phi}}}{r}
$$

$\overrightarrow{\boldsymbol{B}}$ is the magnetic field around a wire along the z-axis carrying a constant current I in the z-direction.

1. Ready:

(a) Determine $\overrightarrow{\boldsymbol{B}} \cdot d \overrightarrow{\boldsymbol{r}}$ on any radial line of the form $y=m x$, where m is a constant.
(b) Determine $\overrightarrow{\boldsymbol{B}} \cdot d \overrightarrow{\boldsymbol{r}}$ on any circle of the form $x^{2}+y^{2}=a^{2}$, where a is a constant.
2. Go: For each of the following curves C_{i}, evaluate the line integral $\int_{C_{i}} \overrightarrow{\boldsymbol{B}} \cdot d \overrightarrow{\boldsymbol{r}}$.
(a) C_{1}, the top half of the circle $r=5$, traversed in a counterclockwise direction.
(b) C_{2}, the top half of the circle $r=2$, traversed in a counterclockwise direction.
(c) C_{3}, the top half of the circle $r=2$, traversed in a clockwise direction.
(d) C_{4}, the bottom half of the circle $r=2$, traversed in a clockwise direction.
(e) C_{5}, the radial line from $(2,0)$ to $(5,0)$.
(f) C_{6}, the radial line from $(-5,0)$ to $(-2,0)$.

3. FOOD FOR THOUGHT

(a) Find closed curves C_{7} and C_{8} such that this integral is nonzero over C_{7} and zero over C_{8}. It is enough to draw your curves; you do not need to parameterize them.
(b) Ampère's Law says that, for any closed curve C, this integral is (μ_{0} times) the current flowing through C (in the z direction). Can you use this fact to explain your results to part (a)?
(c) Is $\overrightarrow{\boldsymbol{B}}$ conservative?

