## Group Activity 6: The Valley

## I Essentials

## (a) Main ideas

- Reinforces both the Master Formula and differentials.
- Sets the stage for path-independence.


## (b) Prerequisites

- Some familiarity with differentials.
- Familiarity with the gradient.


## (c) Warmup

A brief derivation of the master formula from the expression for the differential of a function of two variables.

## (d) Props

- whiteboards and pens
- valley transparency (master on page 99)
- blank transparencies and pens


## (e) Wrapup

- Call someone from each group to the board to draw both their path and $d \overrightarrow{\boldsymbol{r}}$ on the topo map and show how they found $d \overrightarrow{\boldsymbol{r}}$. Discuss the different methods used by different groups. The idea here is that on $\boldsymbol{a}$ curve $d y$ is related to $d x$. Students are being asked to find this relationship, and plug it into the general expression for $d \overrightarrow{\boldsymbol{r}}$.
"Use what you know! Any (algebraically correct) method will work."
- Emphasize that $\vec{\nabla} h$ is a property of the hill, while $d \overrightarrow{\boldsymbol{r}}$ is a property of the curve. The point of the master formula is that it naturally separates the information in $d h$ into these quite different geometric ideas.
- Have the class discuss why the answer to the second integral is in fact easy to find without integration.


## II Details

## (a) In the Classroom

- This lab is on the long side; don't plan to do anything else in a 50minute period. The wrapup alone easily requires 20 minutes to do properly; you may wish to do part of it in a subsequent class period.
- Some students may not realize that $(1,1)$ is on the given circle!
- Ask the students if their level curves are equally spaced. (They shouldn't be.)
- Initially assign each group one of the curves; groups which finish quickly can try other curves. The first curve, the circle, is qualitatively different from the others, and more difficult; see Section 11.2. Furthermore, the instructions do not uniquely determine the curve in this case although the final answer is unaffected. You may wish to assign this curve to a strong group, or not let any group try the circle until they have first done one of the other curves.
- Some students substitute the given point into the height function before computing the gradient! Perhaps asking for a sketch of $\vec{\nabla} h$ at several points rather than just one would discourage this.
- Ensure that students reduce to one variable before integrating.
- Emphasize that one can plug in the relationship between $x$ and $y$ either before or after computing the differential of $h$. Which choice is easiest depends on the circumstances; both will work.
- In the next-to-last question, groups may need to be reminded that they need to plug in information about their curve in order to find $d h$. They should use the expression for the differential of $h$ as a function of either one or two variables, rather than the master formula (which should not be used until the last question).
- Some students will realize that the integrals must be the same because of the master formula before ever trying to compute the second integral. Such students should be praised - but still encouraged to compute the second integral without using the master formula.
- On the circle, some students go from $x^{2}+y^{2}=a^{2}$ directly to " $d \overrightarrow{\boldsymbol{r}}=$ $2 x d x \hat{\boldsymbol{\imath}}+2 y d y \hat{\boldsymbol{\jmath}}$ "! One way to push students away from this mistake is to emphasize that one always has $d \overrightarrow{\boldsymbol{r}}=d x \hat{\boldsymbol{\imath}}+d y \hat{\boldsymbol{\jmath}}$ (or a similar expression in other coordinate systems). We literally stomp our feet when insisting that students start problems involving $d \overrightarrow{\boldsymbol{r}}$ by writing down one of these expressions! A discussion of this point works well as part of the wrapup.
- See the discussion of using transparencies for Group Activity 4.
- Emphasize that $\int_{C}$ is a definite integral, and that $\int_{C} 0 d x=0($ not 1$)$.


## (b) Subsidiary ideas

- The gradient is perpendicular to level curves.
- Emphasize that $d f=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y$ is a coordinate-dependent expression for $d f$, whereas writing $d f=\vec{\nabla} f \cdot d \overrightarrow{\boldsymbol{r}}$ is coordinate independent.


## (c) Homework

1. Consider the valley in this group activity, whose height $h$ in meters is given by $h=\frac{x^{2}}{10}+\frac{y^{2}}{10}$, with $x$ and $y$ (and 10!) in meters. Suppose you are hiking through this valley on a trail given by

$$
x=3 t \quad y=2 t^{2}
$$

with $t$ in seconds (and where " 3 " and " 2 " have appropriate units).
(a) Starting from the master formula, determine how fast you are climbing (rate of change of $h$ ) per meter along the trail when $t=1$.
/it You may find it helpful to recall that $d s=|d \overrightarrow{\boldsymbol{r}}|$.
(b) Starting from the master formula, determine how fast you are climbing per second when $t=1$.

## (d) Essay questions

- During this activity, you drew a gradient vector on a topographic map. Can you draw this vector to scale? Explain.
- What properties of your path are needed to compute the integrals in this activity? To determine the answer?


## (e) Enrichment

- Discuss the relationship between the master formula, the gradient, topographic maps, and path-independence.
- Discuss the fundamental theorem for gradients, namely that the line integral of a gradient is just an obvious antiderivative. Relate this to the geometry, especially the existence of a topo map.
- Many students will integrate the two pieces of $d h=2 x d x+2 y d y$ separately, without worrying about the path. What path is implicitly being used?
- We strongly discourage students from inserting artificial signs into expressions such as $d \overrightarrow{\boldsymbol{r}}=d x \hat{\boldsymbol{\imath}}+d y \hat{\boldsymbol{\jmath}}$. This forces $d y<0$, and in some cases also $d x<0$, so that one must integrate from 1 to 0 . By all means discuss the alternative convention with students, which requires $d x$ and $d y$ to always be positive, and then forces one to insert (and keep track of) appropriate signs by hand.
- Following this lab is a good time to introduce or review the proof, using the master formula, that the gradient is perpendicular to level curves and that it points in the direction of maximal increase.
- A great followup to this activity is a discussion of what questions you can answer using the master formula.
- It is immediately obvious in polar coordinates that these integrals do not depend on $\phi$, and hence are independent of path.


