
Group Activity 11: The Fishing Net

I Essentials

(a) Main ideas

• Practice doing surface integrals

• The Divergence Theorem

(b) Prerequisites

• Ability to do flux integrals

• Definition of divergence

• Statement of Divergence Theorem
This lab can be used prior to covering the Divergence Theorem in class

with either a minimal introduction or a restatement of the last ques-

tion based on the assumption that the given vector field doesn’t “lose”

anything going through the net.

(c) Warmup

• Perhaps a reminder about what the Divergence Theorem is.

(d) Props

• whiteboards and pens

• a model of the fishing net, made from any children’s building set

(e) Wrapup

• Reiterate that the Divergence Theorem only applies to closed surfaces.

• Emphasize that the Divergence Theorem is one of several astonishing
theorems relating what happens inside to what happens outside.

• Have several students show how they computed d~A, since most likely
different choices were made for d~ri and hence the limits.
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II Details

(a) In the Classroom

• By now the groups should be working well. Sit back and watch!

• The main thing to watch out for is whether students choose the cor-
rect signs, both for the normal vectors and the limits of integration.
Reiterate that one should always write d~r = dx ı̂ + dy ̂ + dz k̂; there
should never be minus signs in this equation. The signs will come out
right provided one integrates in the direction of the vectors chosen.

• Most students will realize quickly that there is no flux through the
triangular sides.

• Some students will try to do the surface integrals! Point out that this
isn’t possible — and that the instructions say not to.

• Student may be surprised at first when they calculate ~∇ · ~F = 0,
especially since they (correctly) won’t think that the surface integrals
will add to zero. Use this to motivate the “missing top”.

• Some students incorrectly think that d|z| = |dz|.

(b) Subsidiary ideas

• The geometry of flux.

(c) Homework (none yet)

(d) Essay questions (none yet)

(e) Enrichment

• The surface integrals can in fact be done — provided one adds them
up prior to evaluating the integrals.

• This lab provides a good opportunity for students to visualize the flux:
It’s easy to see that the flux of the horizontal component of this vector
field must be zero geometrically. (It’s even easier to see that the vertical
flux must be zero.)
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x = 5 x = 0

z = 1

z = 0

y+z = 0

• During the wrapup (or the following lecture), draw a picture such as the
one above of one of the rectangular faces, showing all 4 possible choices
for d~r1 and d~r2 (and which is which!), and discuss the integration limits
in each case.

• An alternative approach to this problem is to determine dA geometri-
cally, compute ~F · n̂ explicitly, and then do the integral using “stan-
dard” (increasing) limits. There is nothing wrong with this approach,
but we would discourage the use of the d~r notation here for fear of
making sign errors.

• One could show students the remarkable trick for integrating e−x
2

from
0 to ∞, by squaring and evaluating in polar coordinates.
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