Group Activity 14: Change of Variables

I Essentials

(a) Main ideas

- There are many ways to solve this problem!
- Using Jacobians (and inverse Jacobians)

(b) Prerequisites

- Surface integrals
- Jacobians
- Green's/Stokes' Theorem

(c) Warmup

Perhaps a discussion of single and double integral techniques for solving this problem.

(d) Props

• whiteboards and pens

(e) Wrapup

This is a good conclusion to the course, as it reviews many integration techniques. We emphasize that (2-dimensional) change-of-variable problems are a special case of surface integrals.

Here are some of the methods one could use to do these integrals:

- change of variables (at least 2 ways)
- Area Corollary to Green's Theorem (at least 2 ways)
- ordinary single integral (at least 2 ways)
- ordinary double integral (at least 2 ways)
- surface integral

II Details

(a) In the Classroom

- Some students will want to simply use Jacobian formulas; encourage such students to try to solve this problem both by computing $\frac{\partial(x,y)}{\partial(u,v)}$ and by computing $\frac{\partial(u,v)}{\partial(x,y)}$.
- Other students will want to work directly with $d\vec{r}_1$ and $d\vec{r}_2$. This works fine if one first solves for x and y in terms of u and v.
- Students who compute $d\vec{r}_1$ and $d\vec{r}_2$ directly can easily get confused, since they may try to eliminate x or y, rather than u or v.¹ Emphasize that one must choose parameters, both on the region, and on each curve, and that u and v are chosen to make the limits easy.

(b) Subsidiary ideas

- Review of Green's Theorem
- Review of single integral techniques
- Review of double integral techniques
- (c) Homework (none yet)
- (d) Essay questions (none yet)
- (e) Enrichment
 - Discuss the 3-dimensional case, perhaps relating it to volume integrals.

¹Along the curve v = constant, one has $dy = v \, dx$, so that $d\vec{r}_1 = dx \, \hat{\imath} + dy \, \hat{\jmath} = (\hat{\imath} + v \, \hat{\jmath}) \, dx$, which some students will want to write in terms of x alone. But one needs to express this in terms of du! This can be done using $du = x \, dy + y \, dx = x(v \, dx) + y \, dx = 2y \, dx$, so that $d\vec{r}_1 = (\hat{\imath} + v \, \hat{\jmath}) \, \frac{du}{2y}$. A similar argument leads to $d\vec{r}_2 = (-\frac{1}{v} \, \hat{\imath} + \hat{\jmath}) \, \frac{x \, dv}{2}$ for u = constant, so that $d\vec{A} = d\vec{r}_1 \times d\vec{r}_2 = \hat{k} \, \frac{x}{2y} \, du \, dv = \hat{k} \, \frac{du \, dv}{2v}$. This calculation can be done without solving for x and y, provided one recognizes v in the penultimate expression.