## Group Activity 14: Change of Variables

## I Essentials

(a) Main ideas

- There are many ways to solve this problem!
- Using Jacobians (and inverse Jacobians)
(b) Prerequisites
- Surface integrals
- Jacobians
- Green's/Stokes' Theorem


## (c) Warmup

Perhaps a discussion of single and double integral techniques for solving this problem.

## (d) Props

- whiteboards and pens


## (e) Wrapup

This is a good conclusion to the course, as it reviews many integration techniques. We emphasize that (2-dimensional) change-of-variable problems are a special case of surface integrals.

Here are some of the methods one could use to do these integrals:

- change of variables (at least 2 ways)
- Area Corollary to Green's Theorem (at least 2 ways)
- ordinary single integral (at least 2 ways)
- ordinary double integral (at least 2 ways)
- surface integral


## II Details

(a) In the Classroom

- Some students will want to simply use Jacobian formulas; encourage such students to try to solve this problem both by computing $\frac{\partial(x, y)}{\partial(u, v)}$ and by computing $\frac{\partial(u, v)}{\partial(x, y)}$.
- Other students will want to work directly with $d \overrightarrow{\boldsymbol{r}}_{1}$ and $d \overrightarrow{\boldsymbol{r}}_{2}$. This works fine if one first solves for $x$ and $y$ in terms of $u$ and $v$.
- Students who compute $d \overrightarrow{\boldsymbol{r}}_{1}$ and $d \overrightarrow{\boldsymbol{r}}_{2}$ directly can easily get confused, since they may try to eliminate $x$ or $y$, rather than $u$ or $v .{ }^{1}$ Emphasize that one must choose parameters, both on the region, and on each curve, and that $u$ and $v$ are chosen to make the limits easy.


## (b) Subsidiary ideas

- Review of Green's Theorem
- Review of single integral techniques
- Review of double integral techniques
(c) Homework (none yet)
(d) Essay questions (none yet)
(e) Enrichment
- Discuss the 3-dimensional case, perhaps relating it to volume integrals.

[^0]
[^0]:    ${ }^{1}$ Along the curve $v=$ constant, one has $d y=v d x$, so that $d \overrightarrow{\boldsymbol{r}}_{1}=d x \hat{\boldsymbol{\imath}}+d y \hat{\boldsymbol{\jmath}}=(\hat{\boldsymbol{\imath}}+v \hat{\boldsymbol{\jmath}}) d x$, which some students will want to write in terms of $x$ alone. But one needs to express this in terms of $d u$ ! This can be done using $d u=x d y+y d x=x(v d x)+y d x=2 y d x$, so that $d \overrightarrow{\boldsymbol{r}}_{1}=\left(\hat{\boldsymbol{\imath}}+v \hat{\boldsymbol{\jmath}} \frac{d u}{2 y}\right.$. A similar argument leads to $d \overrightarrow{\boldsymbol{r}}_{2}=\left(-\frac{1}{v} \hat{\boldsymbol{\imath}}+\hat{\boldsymbol{\jmath}}\right) \frac{x d v}{2}$ for $u=$ constant, so that $d \overrightarrow{\boldsymbol{A}}=d \overrightarrow{\boldsymbol{r}}_{1} \times d \overrightarrow{\boldsymbol{r}}_{2}=\hat{\boldsymbol{k}} \frac{x}{2 y} d u d v=\hat{\boldsymbol{k}} \frac{d u d v}{2 v}$. This calculation can be done without solving for $x$ and $y$, provided one recognizes $v$ in the penultimate expression.

