$$\int_{\text{box}} \vec{F} \cdot d\vec{A} = \int_{\text{inside}} \vec{\nabla} \cdot \vec{F} \, dV$$

$$\vec{\nabla} \cdot \vec{F} \approx \frac{\int \vec{F} \cdot d\vec{A}}{\text{volume of box}} = \frac{\text{flux}}{\text{unit volume}}$$

$$\oint_{\text{loop}} \vec{F} \cdot d\vec{r} = \int_{\text{inside}} (\vec{\nabla} \times \vec{F}) \cdot d\vec{A}$$

$$(\vec{\nabla} \times \vec{F}) \cdot \hat{n} \approx \frac{\oint \vec{F} \cdot d\vec{r}}{\text{area of loop}} = \frac{(\text{oriented}) \text{ circulation}}{\text{unit area}}$$

$$\vec{F} = \vec{\nabla} f$$

$$\vec{F} \cdot d\vec{r} = \vec{\nabla}f \cdot d\vec{r} = df$$

$$\oint \vec{F} \cdot d\vec{r} = 0$$

Ť	Ť	Å	4	Å	Ť	Ť
Ť	Å	Å	4	Å	Ť	Ť
Ť	Å	Å	4		Ť	Ť
Ť	4	4	4	Å	Å	Î
Ť	Ť	Å	4	Å	Ť	Ť
Î	4	Å	4	Å	Å	Î
Ť	Å	Å	\uparrow	Å	Å	Î
Ť	\uparrow	Å		Å	Ť	Ť

