Physics vs. Mathematics Classroom Use of Differentials and Thick Derivatives

Tevian Dray, Paul Emigh, Elizabeth Gire, David Roundy, Corinne Manogue

OSU Physics Education Research Lab Oregon State University http://osuper.science.oregonstate.edu/people

Is there a difference between $\frac{x^2 - 4}{x - 2}$ and x + 2? What is a numerical representation of a derivative?

Math vs. Physics: roundoff error, measurement error, quantum mechanics...

small changes... ... differentials ... "thick" derivatives

Extended Framework for Derivative

Process-	Graphica	l Verbal	Symbolic	Numerical	Physical
object layer	Slope	Rate of Change	Difference Quotient	Ratio of Changes	Measurement
Ratio		"avg. rate of change"	$\frac{f(x+\Delta x)-f(x)}{\Delta x}$	$\sum_{\substack{x_2-x_1\\numerically}}^{\underline{y_2-y_1}}$	
Limit		"inst. rate of change"	$\lim_{\Delta x \to 0} \cdots$	with Δx small	
Function		"at any point/time"	f'(x) =	 depends on <i>x</i>	tedious repeti- tion
Process-		· Symbolic · ·			
object layer		Instrumental Understanding			
Function		rules to "take a derivative"			

[Roundy et al., RUME Proceedings 2015, MAA, pp. 838-843.]

Dray, Emigh, Gire, Roundy, Manogue Differentials & Thick Derivatives

Differentials

Does $\frac{df}{dx}$ mean "f'(x)" or "df over dx"? $d(u^2) = 2u du$ d(sin u) = cos u du

Instead of:

- chain rule
- related rates
- implicit differentiation
- derivatives of inverse functions
- difficulties of interpretation (units!)

One coherent idea:

"Zap equations with d"

(infinitesimal reasoning)

[Dray & Manogue, CMJ 34, 283-290 (2003); CMJ 41, 90-100 (2010).]

Partial Derivatives Machine

- Developed for junior-level thermodynamics course
- Two positions, *x_i*, two string tensions (masses), *F_i*.
- "Find $\frac{\partial x}{\partial F}$."
- Idea: Measure Δx , ΔF ; divide.

Paradigms in Physics Project DUE-1023120, DUE-1323800

- Partial Derivative Machine: mechanical analog of thermodynamic system with 4 state variables (x_L, F_L, x_R, F_R).
- Interviewed pairs of mathematicians, physicists, and engineers.
- Task: Find $\frac{\partial x_R}{\partial F_R}$. $\left(\frac{\partial x_R}{\partial F_R}\right)_{x_l} \neq \left(\frac{\partial x_R}{\partial F_R}\right)_{F_l}$

Physicists and Engineers:

Used measurements to find numerical approximation. **Mathematicians:** Reluctant to approximate; wanted functional form.

"That's not a derivative!"

[Roundy et al., Phys. Rev. ST Phys. Educ. Res. 11, 020126 (2015)]

Surfaces

(Each surface is dry-erasable, as are the matching contour maps.) Raising Calculus to the Surface (Aaron Wangberg) Raising Physics to the Surface (+ Liz Gire, Robyn Wangberg) http://raisingcalculus.winona.edu

Measurement:

Ratio: Measure; compare. Limit: Make small changes... Measurement error: ...but not too small!

Numerical computation:

Ratio: Calculate; compare. *Limit:* Make small changes... *Roundoff error:* ...but not too small!

Mathematicians:

Essential difference between average and instantaneous rates of change, no matter how small the step. **Physicists and Engineers:**

Very much aware of how small is "small enough".

Thick Derivatives

Math: ∃ "bright line" between *average* rate of change and *instantaneous* rate of change.

(Such averages are used to approximate derivatives.)

Physics: "Average" refers to secant lines, not (good) approximations to tangent lines.

Move the bright line!

Thick Derivatives!

(Derivatives are fundamentally ratios of small changes, not limits.)

[Dray, AMS Blog on Education, 5/31/16]