Finding the Unknown States Leaving an Oven (Spin-1/2)

1. Start the SPINS program and choose Unknown \# 1 under the initialize menu. This causes the atoms to leave the oven in a definite quantum state, which we call $\left|\psi_{1}\right\rangle$. Now measure the six probabilities $\left|\left\langle\phi \mid \psi_{1}\right\rangle\right|^{2}$, where $|\phi\rangle$ corresponds to spin up and spin down along the three axes. Fill in the table for $\left|\psi_{1}\right\rangle$ on the worksheet. Assume that we want to write the unknown state vectors in terms of the $| \pm\rangle$ basis, i.e. $\left|\psi_{1}\right\rangle=a|+\rangle+b|=\rangle$, where a and b are complex coefficients. We thus must use the data to find the values of a and b.
2. Repeat this exercise for Unknown \#2 $\left(\left|\psi_{2}\right\rangle\right)$, Unknown \#3 $\left(\left|\psi_{3}\right\rangle\right)$, and Unknown \# $4\left(\left|\psi_{4}\right\rangle\right)$.
3. Design an experiment to verify your results (Hint: recall the general spin $1 / 2$ state vector can be written as $\left.|+\rangle n=\cos \frac{\theta}{2}|+\rangle+\sin \frac{\theta}{2} e^{i \phi}|-\rangle\right)$.

Unknown $\left|\psi_{1}\right\rangle$

Probabilities	Axis		
Result	x	y	z
Spin up \uparrow			
Spin down \downarrow			

Unknown $\left|\psi_{2}\right\rangle$

Probabilities	Axis		
Result	x	y	z
Spin up \uparrow			
Spin down \downarrow			

Unknown $\left|\psi_{3}\right\rangle$

Probabilities	Axis		
Result	x	y	z
Spin up \uparrow			
Spin down \downarrow			

Unknown $\left|\psi_{4}\right\rangle$

Probabilities	Axis		
Result	x	y	z
Spin up \uparrow			
Spin down \downarrow			

