SPINS Lab 4

Instructor Version

In this lab the students must figure out how the magnetic field affects the spin states. They have done an experiment earlier (part 2 of Lab 2) that will get them started. If the whole class puts together those results, then they may already have a good idea what is going on. Rather than provide a method, I have asked the students to design and perform their own experiments. They should treat this as a puzzle to be cracked.

Do the following for both the spin-1/2 and spin-1 cases.

- 1. Design an experiment to study the effect of the magnetic field on the spin of the atoms.
- 2. Perform the experiment and record your results.
- 3. From your measurements, develop an hypothesis about the effect of the magnetic field.
- 4. Design a simple experiment that will conclusively confirm your hypothesis.
 - 4. The ideal confirmation experiment is shown below (with the angles for $\hat{\bf n}$ being $\theta = 90^{\circ}$ and $\phi = 30^{\circ}$ for the case of $B_z = 3$).

- 5. Determine the relevant scale and units of the number used to characterize the magnetic field.
 - 5. The magnetic field variable in the program is proportional to the spin precession angle $\omega_0 t$, which is the product of the Larmor frequency and the time of interaction. The Larmor frequency is proportional to the magnetic field strength. For spin 1/2, the angle is 10° times the shown value. For spin 1, the angle is 5° times the shown value.